Index of a singular point of a vector field or of a 1-form on an orbifold

Author:

Gusein-Zade S.

Abstract

Indices of singular points of a vector field or of a 1-form on a smooth manifold are closely related to the Euler characteristic through the classical Poincaré–Hopf theorem. Generalized Euler characteristics (additive topological invariants of spaces with some additional structures) are sometimes related to corresponding analogs of indices of singular points. Earlier, a notion of the universal Euler characteristic of an orbifold was defined. It takes values in a ring R \mathcal {R} , as an Abelian group freely generated by the generators, corresponding to the isomorphism classes of finite groups. Here the universal index of an isolated singular point of a vector field or of a 1-form on an orbifold is defined as an element of the ring R \mathcal {R} . For this index, an analog of the Poincaré–Hopf theorem holds.

Publisher

American Mathematical Society (AMS)

Subject

Applied Mathematics,Algebra and Number Theory,Analysis

Reference16 articles.

1. On equivariant Euler characteristics;Atiyah, Michael;J. Geom. Phys.,1989

2. Orbifold Euler characteristics and the number of commuting 𝑚-tuples in the symmetric groups;Bryan, Jim;Ann. Comb.,1998

3. Jr. F. C. Caramello, Introduction to Orbifolds, Preprint, arXiv:1909:08699.

4. Orbifold Gromov-Witten theory;Chen, Weimin,2002

5. Radial index and Euler obstruction of a 1-form on a singular variety;Ebeling, W.;Geom. Dedicata,2005

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Indices of Vector Fields and 1-Forms;Handbook of Geometry and Topology of Singularities IV;2023

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3