Non-Archimedean indifferent components of rational functions that are not disks

Author:

Nopal-Coello Víctor

Abstract

Consider a rational function of degree d 2 d\geq 2 acting on the Berkovich projective line of a complete and algebraically closed non-archimedean field. Rivera-Letelier has asked if a rational function in this setting can have infinitely many cycles of indifferent components that are not disks, and if not, if there exists a bound in terms of the degree of the function. In this work we show that for d = 2 d=2 the bound is d 1 d-1 . By imposing an extra condition on the residue field and a connectivity requirement on the cycles of indifferent components that are not disks, the bound d 1 d-1 is also achieved when d 3 d\geq 3 . To ensure that the bound is realized, we describe how to construct a rational function of degree d 2 d\geq 2 with exactly d 1 d-1 cycles of indifferent components that are not disks.

Publisher

American Mathematical Society (AMS)

Subject

Applied Mathematics,General Mathematics

Reference18 articles.

1. Mathematical Surveys and Monographs;Baker, Matthew,2010

2. Current trends and open problems in arithmetic dynamics;Benedetto, Robert;Bull. Amer. Math. Soc. (N.S.),2019

3. Graduate Studies in Mathematics;Benedetto, Robert L.,2019

4. Wandering domains in non-Archimedean polynomial dynamics;Benedetto, Robert L.;Bull. London Math. Soc.,2006

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3