Strong multiplicity one theorems for locally homogeneous spaces of compact-type

Author:

Lauret Emilio,Miatello Roberto

Abstract

Let G G be a compact connected semisimple Lie group, let K K be a closed subgroup of G G , let Γ \Gamma be a finite subgroup of G G , and let τ \tau be a finite-dimensional representation of K K . For π \pi in the unitary dual G ^ \widehat G of G G , denote by n Γ ( π ) n_\Gamma (\pi ) its multiplicity in L 2 ( Γ G ) L^2(\Gamma \backslash G) .

We prove a strong multiplicity one theorem in the spirit of Bhagwat and Rajan, for the n Γ ( π ) n_\Gamma (\pi ) for π \pi in the set G ^ τ \widehat G_\tau of irreducible τ \tau -spherical representations of G G . More precisely, for Γ \Gamma and Γ \Gamma ’ finite subgroups of G G , we prove that if n Γ ( π ) = n Γ ( π ) n_{\Gamma }(\pi )= n_{\Gamma ’}(\pi ) for all but finitely many π G ^ τ \pi \in \widehat G_\tau , then Γ \Gamma and Γ \Gamma ’ are τ \tau -representation equivalent, that is, n Γ ( π ) = n Γ ( π ) n_{\Gamma }(\pi )=n_{\Gamma ’}(\pi ) for all π G ^ τ \pi \in \widehat G_\tau .

Moreover, when G ^ τ \widehat G_\tau can be written as a finite union of strings of representations, we prove a finite version of the above result. For any finite subset F ^ τ \widehat {F}_{\tau } of G ^ τ \widehat G_{\tau } verifying some mild conditions, the values of the n Γ ( π ) n_\Gamma (\pi ) for π F ^ τ \pi \in \widehat F_{\tau } determine the n Γ ( π ) n_\Gamma (\pi ) ’s for all π G ^ τ \pi \in \widehat G_\tau . In particular, for two finite subgroups Γ \Gamma and Γ \Gamma ’ of G G , if n Γ ( π ) = n Γ ( π ) n_\Gamma (\pi ) = n_{\Gamma ’}(\pi ) for all π F ^ τ \pi \in \widehat F_{\tau } , then the equality holds for every π G ^ τ \pi \in \widehat G_\tau . We use algebraic methods involving generating functions and some facts from the representation theory of G G .

Funder

Fondo para la Investigación Científica y Tecnológica

Publisher

American Mathematical Society (AMS)

Subject

Applied Mathematics,General Mathematics

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3