A remark on the global dynamics of competitive systems on ordered Banach spaces

Author:

Lam King-Yeung,Munther Daniel

Abstract

A well-known result in [Hsu-Smith-Waltman, Trans. Amer. Math. Soc. (1996)] states that in a competitive semiflow defined on X + = X 1 + × X 2 + X^+ = X_1^+ \times X_2^+ , the product of two cones in respective Banach spaces, if ( u , 0 ) (u^*,0) and ( 0 , v ) (0,v^*) are the global attractors in X 1 + × { 0 } X_1^+ \times \{0\} and { 0 } × X 2 + \{0\}\times X_2^+ respectively, then one of the following three outcomes is possible for the two competitors: either there is at least one coexistence steady state, or one of ( u , 0 ) , ( 0 , v ) (u^*,0), (0,v^*) attracts all trajectories initiating in the order interval I = [ 0 , u ] × [ 0 , v ] I = [0,u^*] \times [0,v^*] . However, it was demonstrated by an example that in some cases neither ( u , 0 ) (u^*,0) nor ( 0 , v ) (0,v^*) is globally asymptotically stable if we broaden our scope to all of X + X^+ . In this paper, we give two sufficient conditions that guarantee, in the absence of coexistence steady states, the global asymptotic stability of one of ( u , 0 ) (u^*,0) or ( 0 , v ) (0,v^*) among all trajectories in X + X^+ . Namely, one of ( u , 0 ) (u^*,0) or ( 0 , v ) (0,v^*) is (i) linearly unstable, or (ii) linearly neutrally stable but zero is a simple eigenvalue. Our results complement the counterexample mentioned in the above paper as well as applications that frequently arise in practice.

Publisher

American Mathematical Society (AMS)

Subject

Applied Mathematics,General Mathematics

Reference11 articles.

1. I. Averill, Y. Lou, and D. Munther, On several conjectures from evolution of dispersal, J. Biol. Dyn. 6 (2012), 117-130.

2. Evolutionary stability of ideal free dispersal strategies in patchy environments;Cantrell, Robert Stephen;J. Math. Biol.,2012

3. Evolutionary stability of ideal free dispersal strategies: a nonlocal dispersal model;Cantrell, Robert Stephen;Can. Appl. Math. Q.,2012

4. The effects of diffusion and spatial variation in Lotka-Volterra competition-diffusion system I: Heterogeneity vs. homogeneity;He, Xiaoqing;J. Differential Equations,2013

5. Lecture Notes in Mathematics;Henry, Daniel,1981

Cited by 50 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3