Plurisigned hermitian metrics

Author:

Angella Daniele,Guedj Vincent,Lu Chinh

Abstract

Let ( X , ω ) (X,\omega ) be a compact hermitian manifold of dimension n n . We study the asymptotic behavior of Monge-Ampère volumes X ( ω + d d c φ ) n \int _X (\omega +dd^c \varphi )^n , when ω + d d c φ \omega +dd^c \varphi varies in the set of hermitian forms that are d d c dd^c -cohomologous to ω \omega . We show that these Monge-Ampère volumes are uniformly bounded if ω \omega is “strongly pluripositive”, and that they are uniformly positive if ω \omega is “strongly plurinegative”. This motivates the study of the existence of such plurisigned hermitian metrics.

We analyze several classes of examples (complex parallelisable manifolds, twistor spaces, Vaisman manifolds) admitting such metrics, showing that they cannot coexist. We take a close look at 6 6 -dimensional nilmanifolds which admit a left-invariant complex structure, showing that each of them admit a plurisigned hermitian metric, while only few of them admit a pluriclosed metric. We also study 6 6 -dimensional solvmanifolds with trivial canonical bundle.

Funder

Ministero dell’Istruzione, dell’Università e della Ricerca

Publisher

American Mathematical Society (AMS)

Subject

Applied Mathematics,General Mathematics

Reference76 articles.

1. Hermitian left invariant metrics on complex Lie groups and cosymplectic Hermitian manifolds;Abbena, E.;Boll. Un. Mat. Ital. A (6),1986

2. Vanishing theorems on Hermitian manifolds;Alexandrov, Bogdan;Differential Geom. Appl.,2001

3. Classification of abelian complex structures on 6-dimensional Lie algebras;Andrada, A.;J. Lond. Math. Soc. (2),2011

4. [ADOS22] D. Angella, A. Dubickas, A. Otiman, and J. Stelzig, On metric and cohomological properties of Oeljeklaus-Toma manifolds, Publicacions Matemàtiques, to appear. arXiv:2201.06377.

5. Bott-Chern cohomology of solvmanifolds;Angella, Daniele;Ann. Global Anal. Geom.,2017

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Quasi-plurisubharmonic envelopes 3: Solving Monge–Ampère equations on hermitian manifolds;Journal für die reine und angewandte Mathematik (Crelles Journal);2023-06-09

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3