Geometry of logarithmic forms and deformations of complex structures

Author:

Liu Kefeng,Rao Sheng,Wan Xueyuan

Abstract

We present a new method to solve certain ¯ \bar \partial -equations for logarithmic differential forms by using harmonic integral theory for currents on Kähler manifolds. The result can be considered as a ¯ \partial \bar \partial -lemma for logarithmic forms. As applications, we generalize the result of Deligne about closedness of logarithmic forms, give geometric and simpler proofs of Deligne’s degeneracy theorem for the logarithmic Hodge to de Rham spectral sequences at E 1 E_1 -level, as well as a certain injectivity theorem on compact Kähler manifolds.

Furthermore, for a family of logarithmic deformations of complex structures on Kähler manifolds, we construct the extension for any logarithmic ( n , q ) (n,q) -form on the central fiber and thus deduce the local stability of log Calabi-Yau structure by extending an iteration method to the logarithmic forms. Finally we prove the unobstructedness of the deformations of a log Calabi-Yau pair and a pair on a Calabi-Yau manifold by the differential geometric method.

Publisher

American Mathematical Society (AMS)

Subject

Geometry and Topology,Algebra and Number Theory

Reference44 articles.

1. An injectivity theorem;Ambro, Florin;Compos. Math.,2014

2. Pure and Applied Mathematics (Boca Raton);Ancona, Vincenzo,2006

3. Ergebnisse der Mathematik und ihrer Grenzgebiete. 3. Folge. A Series of Modern Surveys in Mathematics [Results in Mathematics and Related Areas. 3rd Series. A Series of Modern Surveys in Mathematics];Barth, Wolf P.,2004

4. Hamiltonian Kählerian manifolds;Bogomolov, F. A.;Dokl. Akad. Nauk SSSR,1978

5. A general description of the terms in the Frölicher spectral sequence;Cordero, Luis A.;Differential Geom. Appl.,1997

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Two Applications of the $$\partial \overline \partial $$-Hodge Theory;Chinese Annals of Mathematics, Series B;2024-01

2. On Cohomology Vanishing with Polynomial Growth on Complex Manifolds with Pseudoconvex Boundary;Publications of the Research Institute for Mathematical Sciences;2023-11-09

3. Deformations of Compact Complex Manifolds with Ample Canonical Bundles;Chinese Annals of Mathematics, Series B;2023-01

4. The logarithmic Bogomolov–Tian–Todorov theorem;Bulletin of the London Mathematical Society;2022-04

5. Injectivity theorems with multiplier ideal sheaves for higher direct images under Kähler morphisms;Algebraic Geometry;2022-03-01

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3