The generalized Lichnerowicz problem: Uniformly quasiregular mappings and space forms

Author:

Martin Gaven,Mayer Volker,Peltonen Kirsi

Abstract

A uqr mapping of an n n -manifold M M is a mapping which is rational with respect to a bounded measurable conformal structure on M M . Remarkably, the only closed manifolds on which locally (but not globally) injective uqr mappings act are Euclidean space forms. We further characterize space forms admitting uniformly quasiregular self mappings and we show that the space forms admitting branched uqr maps are precisely the spherical space forms. We further show that every non-injective uqr map of a Euclidean space form is a quasiconformal conjugate of a conformal map. This is not true if the non-injective hypothesis is removed.

Publisher

American Mathematical Society (AMS)

Subject

Applied Mathematics,General Mathematics

Reference16 articles.

1. Transformations conformes et quasi-conformes des variétés riemanniennes compactes (démonstration de la conjecture de A. Lichnerowicz);Lelong-Ferrand, Jacqueline;Acad. Roy. Belg. Cl. Sci. M\'{e}m. Collect. 8$^{\rm o}$ (2),1971

2. Discrete quasiconformal groups. I;Gehring, F. W.;Proc. London Math. Soc. (3),1987

3. Local dynamics of uniformly quasiregular mappings;Hinkkanen, Aimo;Math. Scand.,2004

4. Ricci curvature, Harnack functions, and Picard type theorems for quasiregular mappings;Holopainen, Ilkka,1998

5. Quasiregular semigroups;Iwaniec, Tadeusz;Ann. Acad. Sci. Fenn. Math.,1996

Cited by 12 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Endomorphisms of mapping tori;Transactions of the American Mathematical Society;2024-06-18

2. Bubbling of quasiregular maps;Mathematische Annalen;2022-03-07

3. Obstructions for automorphic quasiregular maps and Lattès-type uniformly quasiregular maps;Journal d'Analyse Mathématique;2021-12-31

4. Conformally formal manifolds and the uniformly quasiregular non-ellipticity of (S2×S2)#(S2×S2);Advances in Mathematics;2021-12

5. Sharp cohomological bound for uniformly quasiregularly elliptic manifolds;American Journal of Mathematics;2021

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3