An obstruction for the mean curvature of a conformal immersion 𝑆ⁿ→ℝⁿ⁺¹

Author:

Ammann Bernd,Humbert Emmanuel,Ahmedou Mohameden

Abstract

We prove a Pohozaev type identity for non-linear eigenvalue equations of the Dirac operator on Riemannian spin manifolds with boundary. As an application, we obtain that the mean curvature H H of a conformal immersion S n R n + 1 S^n\to \mathbb {R}^{n+1} satisfies X H = 0 \int \partial _X H=0 where X X is a conformal vector field on S n S^n and where the integration is carried out with respect to the Euclidean volume measure of the image. This identity is analogous to the Kazdan-Warner obstruction that appears in the problem of prescribing the scalar curvature on S n S^n inside the standard conformal class.

Publisher

American Mathematical Society (AMS)

Subject

Applied Mathematics,General Mathematics

Reference11 articles.

1. Extrinsic bounds for eigenvalues of the Dirac operator;Bär, Christian;Ann. Global Anal. Geom.,1998

2. Scalar curvature functions in a conformal class of metrics and conformal transformations;Bourguignon, Jean-Pierre;Trans. Amer. Math. Soc.,1987

3. Spineurs, opérateurs de Dirac et variations de métriques;Bourguignon, Jean-Pierre;Comm. Math. Phys.,1992

4. [DR99] O. Druet and F. Robert, On the equivariance of the Kazdan-Warner and the Pohozaev identities, Preprint, 1999.

5. On the spinor representation of surfaces in Euclidean 3-space;Friedrich, Thomas;J. Geom. Phys.,1998

Cited by 12 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Non-compactness results for the spinorial Yamabe-type problems with non-smooth geometric data;Journal of Functional Analysis;2024-08

2. Nonrelativistic limit and nonexistence of stationary solutions of nonlinear Dirac equations;Journal of Differential Equations;2023-11

3. Curvature effect in the spinorial Yamabe problem on product manifolds;Calculus of Variations and Partial Differential Equations;2022-08-15

4. Vanishing Pohozaev constant and removability of singularities;Journal of Differential Geometry;2019-01-01

5. Infinitely many solutions for the spinorial Yamabe problem on the round sphere;Nonlinear Differential Equations and Applications NoDEA;2016-04-26

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3