Definability in the lattice of equational theories of commutative semigroups

Author:

Kisielewicz Andrzej

Abstract

In this paper we study first-order definability in the lattice of equational theories of commutative semigroups. In a series of papers, J. Ježek, solving problems posed by A. Tarski and R. McKenzie, has proved, in particular, that each equational theory is first-order definable in the lattice of equational theories of a given type, up to automorphism, and that such lattices have no automorphisms besides the obvious syntactically defined ones (with exceptions for special unary types). He has proved also that the most important classes of theories of a given type are so definable. In a later paper, Ježek and McKenzie have “almost proved" the same facts for the lattice of equational theories of semigroups. There were good reasons to believe that the same can be proved for the lattice of equational theories of commutative semigroups. In this paper, however, we show that the case of commutative semigroups is different.

Publisher

American Mathematical Society (AMS)

Subject

Applied Mathematics,General Mathematics

Reference18 articles.

1. M. Grech, Irreducible varieties of commutative semigroups, J. Algebra, to appear.

2. Covering relation for equational theories of commutative semigroups;Grech, Mariusz;J. Algebra,2000

3. Fully invariant congruences on free commutative semigroups;Grillet, Pierre Antoine;Acta Sci. Math. (Szeged),2001

4. Coverings in the lattice of varieties;Iskander, A. A.,1977

5. Definability in the lattice of ring varieties;Iskander, Awad A.;Pacific J. Math.,1978

Cited by 10 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3