Complete hyperelliptic integrals of the first kind and their non-oscillation

Author:

Gavrilov Lubomir,Iliev Iliya

Abstract

Let P ( x ) P(x) be a real polynomial of degree 2 g + 1 2g+1 , H = y 2 + P ( x ) H=y^2+P(x) and δ ( h ) \delta (h) be an oval contained in the level set { H = h } \{H=h\} . We study complete Abelian integrals of the form \[ I ( h ) = δ ( h ) ( α 0 + α 1 x + + α g 1 x g 1 ) d x y , h Σ , I(h)=\int _{\delta (h)} \frac {(\alpha _0+\alpha _1 x+\ldots + \alpha _{g-1}x^{g-1})dx}{y}, \;\;h\in \Sigma , \] where α i \alpha _i are real and Σ R \Sigma \subset \mathbb {R} is a maximal open interval on which a continuous family of ovals { δ ( h ) } \{\delta (h)\} exists. We show that the g g -dimensional real vector space of these integrals is not Chebyshev in general: for any g > 1 g>1 , there are hyperelliptic Hamiltonians H H and continuous families of ovals δ ( h ) { H = h } \delta (h)\subset \{H=h\} , h Σ h\in \Sigma , such that the Abelian integral I ( h ) I(h) can have at least [ 3 2 g ] 1 [\frac 32g]-1 zeros in Σ \Sigma . Our main result is Theorem 1 in which we show that when g = 2 g=2 , exceptional families of ovals { δ ( h ) } \{\delta (h)\} exist, such that the corresponding vector space is still Chebyshev.

Publisher

American Mathematical Society (AMS)

Subject

Applied Mathematics,General Mathematics

Reference24 articles.

1. Le groupe de monodromie du déploiement des singularités isolées de courbes planes. I;A’Campo, Norbert;Math. Ann.,1975

2. Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences];Arbarello, E.,1985

3. Généralisation de l’équation de Hesse;Germay, R. H. J.;Ann. Soc. Sci. Bruxelles S\'{e}r. I,1939

4. V.I. Arnold, Yu.S. Il’yashenko, Ordinary Differential Equations, in: Dynamical Systems I, Encyclopaedia of Math. Sci., vol. 1, Springer, Berlin, 1988.

5. Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences];Arnol′d, V. I.,1988

Cited by 26 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3