Stationary sets for the wave equation in crystallographic domains

Author:

Agranovsky Mark,Quinto Eric

Abstract

Let W W be a crystallographic group in R n \mathbb R^n generated by reflections and let Ω \Omega be the fundamental domain of W . W. We characterize stationary sets for the wave equation in Ω \Omega when the initial data is supported in the interior of Ω . \Omega . The stationary sets are the sets of time-invariant zeros of nontrivial solutions that are identically zero at t = 0 t=0 . We show that, for these initial data, the ( n 1 ) (n-1) -dimensional part of the stationary sets consists of hyperplanes that are mirrors of a crystallographic group W ~ \tilde W , W > W ~ . W>\tilde W. This part comes from a corresponding odd symmetry of the initial data. In physical language, the result is that if the initial source is localized strictly inside of the crystalline Ω \Omega , then unmovable interference hypersurfaces can only be faces of a crystalline substructure of the original one.

Publisher

American Mathematical Society (AMS)

Subject

Applied Mathematics,General Mathematics

Reference17 articles.

1. Approximation by spherical waves in 𝐿^{𝑝}-spaces;Agranovsky, Mark;J. Geom. Anal.,1996

2. Injectivity sets for the Radon transform over circles and complete systems of radial functions;Agranovsky, Mark L.;J. Funct. Anal.,1996

3. Injectivity of the spherical mean operator and related problems;Agranovsky, Mark L.,1996

4. Geometry of stationary sets for the wave equation in ℝⁿ: the case of finitely supported initial data;Agranovsky, Mark L.;Duke Math. J.,2001

5. Conical uniqueness sets for the spherical Radon transform;Agranovsky, M. L.;Bull. London Math. Soc.,1999

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Research biography of a distinguished expert in the field of inverse problems: Professor Eric Todd Quinto;Journal of Inverse and Ill-posed Problems;2022-06-25

2. Mathematics of thermoacoustic tomography;European Journal of Applied Mathematics;2008-03-19

3. Range descriptions for the spherical mean Radon transform;Journal of Functional Analysis;2007-07

4. Support theorems for the spherical Radon transform on manifolds;International Mathematics Research Notices;2006-01-01

5. On the injectivity of the circular Radon transform;Inverse Problems;2005-02-02

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3