Asymptotic stability of the wave equation on compact surfaces and locally distributed damping-A sharp result

Author:

Cavalcanti M.,Domingos Cavalcanti V.,Fukuoka R.,Soriano J.

Abstract

This paper is concerned with the study of the wave equation on compact surfaces and locally distributed damping, described by u t t Δ M u + a ( x ) g ( u t ) = 0 on \thinspace  M × ] 0 , [ , \begin{equation} \left . \begin {array}{l} u_{tt} - \Delta _{\mathcal {M}}u+ a(x) g(u_{t})=0 \; \text {on \thinspace }\mathcal {M}\times \left ] 0,\infty \right [ , \end{array} \right . \nonumber \end{equation} where M R 3 \mathcal {M}\subset \mathbb {R}^3 is a smooth oriented embedded compact surface without boundary. Denoting by g \mathbf {g} the Riemannian metric induced on M \mathcal {M} by R 3 \mathbb {R}^3 , we prove that for each ϵ > 0 \epsilon > 0 , there exist an open subset V M V \subset \mathcal M and a smooth function f : M R f:\mathcal M \rightarrow \mathbb R such that m e a s ( V ) m e a s ( M ) ϵ meas(V)\geq meas(\mathcal M)-\epsilon , H e s s f g Hess f \approx \mathbf {g} on V V and inf x V | f ( x ) | > 0 \underset {x\in V}\inf |\nabla f(x)|>0 .

In addition, we prove that if a ( x ) a 0 > 0 a(x) \geq a_0> 0 on an open subset M M \mathcal {M}{\ast } \subset \mathcal M which contains M V \mathcal {M}\backslash V and if g g is a monotonic increasing function such that k | s | | g ( s ) | K | s | k |s| \leq |g(s)| \leq K |s| for all | s | 1 |s| \geq 1 , then uniform and optimal decay rates of the energy hold.

Publisher

American Mathematical Society (AMS)

Subject

Applied Mathematics,General Mathematics

Reference21 articles.

1. Convexity and weighted integral inequalities for energy decay rates of nonlinear dissipative hyperbolic systems;Alabau-Boussouira, Fatiha;Appl. Math. Optim.,2005

2. Existence and asymptotic stability for viscoelastic evolution problems on compact manifolds;Andrade, Doherty;J. Comput. Anal. Appl.,2006

3. Existence and asymptotic stability for viscoelastic evolution problems on compact manifolds. II;Andrade, Doherty;J. Comput. Anal. Appl.,2006

4. Recherches en Math\'{e}matiques Appliqu\'{e}es [Research in Applied Mathematics];Lions, J.-L.,1988

5. Existence and asymptotic stability for evolution problems on manifolds with damping and source terms;Cavalcanti, Marcelo M.;J. Math. Anal. Appl.,2004

Cited by 73 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3