Orbit of the diagonal in the power of a nilmanifold

Author:

Leibman A.

Abstract

Let X X be a nilmanifold, that is, a compact homogeneous space of a nilpotent Lie group G G , and let a G a\in G . We study the closure of the orbit of the diagonal of X r X^{r} under the action ( a p 1 ( n ) , , a p r ( n ) ) (a^{p_{1}(n)},\ldots ,a^{p_{r}(n)}) , where p i p_{i} are integer-valued polynomials in m m integer variables. (Knowing this closure is crucial for finding limits of the form lim N 1 N m n { 1 , , N } m μ ( T p 1 ( n ) A 1 T p r ( n ) A r ) \hbox {lim}_{N\rightarrow \infty }\frac {1}{N^{m}}\sum _{n\in \{1,\ldots ,N\}^{m}} \mu (T^{p_{1}(n)}A_{1}\cap \ldots \cap T^{p_{r}(n)}A_{r}) , where T T is a measure-preserving transformation of a finite measure space ( Y , μ ) (Y,\mu ) and A i A_{i} are subsets of Y Y , and limits of the form lim N 1 N m n { 1 , , N } m d ( ( A 1 + p 1 ( n ) ) ( A r + p r ( n ) ) ) \hbox {lim}_{N\rightarrow \infty }\frac {1}{N^{m}}\sum _{n\in \{1,\ldots ,N\}^{m}} d((A_{1}+p_{1}(n))\cap \ldots \cap (A_{r}+p_{r}(n))) , where A i A_{i} are subsets of Z and d ( A ) d(A) is the density of A A in Z.) We give a simple description of the closure of the orbit of the diagonal in the case that all p i p_{i} are linear, in the case that G G is connected, and in the case that the identity component of G G is commutative; in the general case our description of the orbit is not explicit.

Publisher

American Mathematical Society (AMS)

Subject

Applied Mathematics,General Mathematics

Reference23 articles.

1. The multifarious Poincaré recurrence theorem;Bergelson, Vitaly,2000

2. Multiple recurrence and nilsequences;Bergelson, Vitaly;Invent. Math.,2005

3. Complexities of finite families of polynomials, Weyl systems, and constructions in combinatorial number theory;Bergelson, V.;J. Anal. Math.,2007

4. Intersective polynomials and the polynomial Szemerédi theorem;Bergelson, V.;Adv. Math.,2008

5. Multiple ergodic averages for three polynomials and applications;Frantzikinakis, Nikos;Trans. Amer. Math. Soc.,2008

Cited by 16 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Sarnak's Conjecture for nilsequences on arbitrary number fields and applications;Advances in Mathematics;2023-02

2. On several notions of complexity of polynomial progressions;Ergodic Theory and Dynamical Systems;2022-01-20

3. True complexity of polynomial progressions in finite fields;Proceedings of the Edinburgh Mathematical Society;2021-06-07

4. Optimal lower bounds for multiple recurrence;Ergodic Theory and Dynamical Systems;2019-10-07

5. A continuous model for systems of complexity 2 on simple abelian groups;Journal d'Analyse Mathématique;2018-06

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3