Knot signature functions are independent

Author:

Cha Jae,Livingston Charles

Abstract

A Seifert matrix is a square integral matrix V V satisfying det ( V V T ) = ± 1. \begin{equation*}\det (V - V^T) =\pm 1. \end{equation*} To such a matrix and unit complex number ω \omega there corresponds a signature, σ ω ( V ) = sign ( ( 1 ω ) V + ( 1 ω ¯ ) V T ) . \begin{equation*}\sigma _\omega (V) = \mbox {sign}( (1 - \omega )V + (1 - \bar {\omega })V^T). \end{equation*} Let S S denote the set of unit complex numbers with positive imaginary part. We show that { σ ω } ω S \{\sigma _\omega \}_ { \omega \in S } is linearly independent, viewed as a set of functions on the set of all Seifert matrices. If V V is metabolic, then σ ω ( V ) = 0 \sigma _\omega (V) = 0 unless ω \omega is a root of the Alexander polynomial, Δ V ( t ) = det ( V t V T ) \Delta _V(t) = \det (V - tV^T) . Let A A denote the set of all unit roots of all Alexander polynomials with positive imaginary part. We show that { σ ω } ω A \{\sigma _\omega \}_ { \omega \in A } is linearly independent when viewed as a set of functions on the set of all metabolic Seifert matrices. To each knot K S 3 K \subset S^3 one can associate a Seifert matrix V K V_K , and σ ω ( V K ) \sigma _\omega (V_K) induces a knot invariant. Topological applications of our results include a proof that the set of functions { σ ω } ω S \{\sigma _\omega \}_ { \omega \in S } is linearly independent on the set of all knots and that the set of two–sided averaged signature functions, { σ ω } ω S \{\sigma ^*_\omega \}_ { \omega \in S } , forms a linearly independent set of homomorphisms on the knot concordance group. Also, if ν S \nu \in S is the root of some Alexander polynomial, then there is a slice knot K K whose signature function σ ω ( K ) \sigma _\omega (K) is nontrivial only at ω = ν \omega = \nu and ω = ν ¯ \omega = \overline {\nu } . We demonstrate that the results extend to the higher-dimensional setting.

Publisher

American Mathematical Society (AMS)

Subject

Applied Mathematics,General Mathematics

Reference13 articles.

1. Progress in Mathematics,1986

2. On slice knots in dimension three;Casson, A. J.,1978

3. T. Cochran, K. Orr, and P. Teichner, Knot concordance, Whitney towers and 𝐿² signatures, Annals of Math. (2) 157 (2003), 433–519.

4. Slice knots in 𝑆³;Gilmer, Patrick M.;Quart. J. Math. Oxford Ser. (2),1983

5. Classical knot and link concordance;Gilmer, Patrick;Comment. Math. Helv.,1993

Cited by 16 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Slopes and concordance of links;Algebraic & Geometric Topology;2024-04-12

2. Homomorphism obstructions for satellite maps;Transactions of the American Mathematical Society, Series B;2023-02-07

3. Embedding spheres in knot traces;Compositio Mathematica;2021-10

4. The cobordism distance between a knot and its reverse;P AM MATH SOC;2021-09-03

5. The bipolar filtration of topologically slice knots;Advances in Mathematics;2021-09

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3