Small prime solutions of quadratic equations II

Author:

Choi Kwok-Kwong,Liu Jianya

Abstract

Let b 1 , , b 5 b_1, \ldots , b_5 be non-zero integers and n n any integer. Suppose that b 1 + + b 5 n ( mod 24 ) b_1+\cdots +b_5 \equiv n \pmod {24} and ( b i , b j ) = 1 (b_i,b_j)=1 for 1 i > j 5 1 \leq i > j \leq 5 . In this paper we prove that (i) if the b j b_j are not all of the same sign, then the above quadratic equation has prime solutions satisfying p j | n | + max { | b j | } 25 / 2 + ε ; p_j\ll \sqrt {|n|}+ \max \{|b_j|\}^{25/2+\varepsilon }; and (ii) if all the b j b_j are positive and n max { | b j | } 26 + ε n \gg \max \{|b_j|\}^{26+\varepsilon } , then the quadratic equation b 1 p 1 2 + + b 5 p 5 2 = n b_1p_1^2+\cdots +b_5p_5^2=n is soluble in primes p j . p_j. Our previous results are max { | b j | } 20 + ε \max \{|b_j|\}^{20+\varepsilon } and max { | b j | } 41 + ε \max \{|b_j|\}^{41+\varepsilon } in place of max { | b j | } 25 / 2 + ε \max \{|b_j|\}^{25/2+\varepsilon } and max { | b j | } 26 + ε \max \{|b_j|\}^{26+\varepsilon } above, respectively.

Publisher

American Mathematical Society (AMS)

Subject

Applied Mathematics,General Mathematics

Reference5 articles.

1. Small prime solutions of quadratic equations;Choi, Kwok-Kwong Stephen;Canad. J. Math.,2002

2. Graduate Texts in Mathematics;Davenport, Harold,1980

3. L. K. Hua, Some results in the additive prime number theory, Quart. J. Math. (Oxford) 9(1938), 68-80.

4. On Lagrange’s theorem with prime variables;Liu, Jianya;Q. J. Math.,2003

5. J. Y. Liu and T. Zhan, An iterative method in the Waring-Goldbach problem, to appear.

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Small prime solutions of a Diophantine equation with one prime and five cubes of primes;Functiones et Approximatio Commentarii Mathematici;2021-03-01

2. Small solutions of an equation with unequal powers of primes;Acta Arithmetica;2020

3. Small prime solutions to diagonal Diophantine equations;International Journal of Number Theory;2019-09-04

4. Diagonal diophantine equations with small prime variables;Journal of Mathematical Analysis and Applications;2016-08

5. Small prime solutions to cubic equations;Science China Mathematics;2016-05-10

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3