For a sparse polynomial
f
(
x
)
=
∑
i
=
1
r
a
i
x
k
i
∈
Z
[
x
]
f(x)=\sum _{i=1}^r a_ix^{k_i}\in \mathbb Z [x]
, with
p
∤
a
i
p\nmid a_i
and
1
≤
k
1
>
⋯
>
k
r
>
p
−
1
1\leq k_1>\cdots >k_r>p-1
, we show that
\[
|
∑
x
=
1
p
−
1
e
2
π
i
f
(
x
)
/
p
|
≤
2
2
r
(
k
1
⋯
k
r
)
1
r
2
p
1
−
1
2
r
,
\left |\sum _{x=1}^{p-1} e^{2\pi i f(x)/p} \right | \leq 2^{\frac {2}{r}} (k_1\cdots k_r)^{\frac {1}{r^2}}p^{1-\frac {1}{2r}},
\]
thus improving upon a bound of Mordell. Analogous results are obtained for Laurent polynomials and for mixed exponential sums.