Lyapunov characteristic exponents are nonnegative

Author:

Przytycki Feliks

Abstract

We prove that, for an arbitrary rational map f f on the Riemann sphere and an arbitrary probability invariant measure on the Julia set, Lyapunov characteristic exponents are nonnegative a.e. In particular log | f | \log |f’| is integrable. An analogous theorem is proved for smooth maps of an interval with all critical points being nonflat. This allows us to fill a gap in the proof of Denker and Urbański’s theorem that there exists a probability conformal measure on the Julia set with exponent equal to the supremum of the Hausdorff dimensions of probability invariant measures with positive entropy.

Publisher

American Mathematical Society (AMS)

Subject

Applied Mathematics,General Mathematics

Reference10 articles.

1. Nonexistence of wandering intervals and structure of topological attractors of one-dimensional dynamical systems. II. The smooth case;Blokh, A. M.;Ergodic Theory Dynam. Systems,1989

2. Progress in Physics;Collet, Pierre,1980

3. On Sullivan’s conformal measures for rational maps of the Riemann sphere;Denker, M.;Nonlinearity,1991

4. On iterations of Misiurewicz’s rational maps on the Riemann sphere;Grzegorczyk, P.;Ann. Inst. H. Poincar\'{e} Phys. Th\'{e}or.,1990

5. Exemples de fractions rationnelles ayant une orbite dense sur la sphère de Riemann;Herman, Michael-R.;Bull. Soc. Math. France,1984

Cited by 32 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Entropy of Irregular Points for Some Dynamical Systems;Journal of Statistical Physics;2022-08-11

2. Note on Lyapunov Exponent for Critical Circle Maps;Bulletin of the Brazilian Mathematical Society, New Series;2022-06-30

3. Non-Uniform Hyperbolicity in Polynomial Skew Products;International Mathematics Research Notices;2022-05-06

4. Invariant measures for interval maps without Lyapunov exponents;Ergodic Theory and Dynamical Systems;2021-11-15

5. Thermodynamic Formalism Methods In the Theory of Iteration of Mappings in Dimension One, Real and Complex;Annales Mathematicae Silesianae;2020-12-14

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3