Decomposition of Peano derivatives

Author:

Fejzić Hajrudin

Abstract

Let Δ {\Delta ’} be the class of all derivatives, and let [ Δ ] [{\Delta ’}] be the vector space generated by Δ {\Delta ’} and O’Malley’s class B 1 B_1^{\ast } . In [1] it is shown that every function in [ Δ ] [{\Delta ’}] is of the form g + h k {g’} + h{k’} , where g , h g,h , and k k are differentiable, and that f [ Δ ] f \in [{\Delta ’}] if and only if there is a sequence of derivatives v n {v_n} and closed sets A n {A_n} such that n = 1 A n = R \cup _{n = 1}^\infty {A_n} = {\mathbf {R}} and f = v n f = {v_n} on A n {A_n} . The sequence of sets A n {A_n} together with the corresponding functions v n {v_n} is called a decomposition of f f . In this paper we show that every Peano derivative belongs to [ Δ ] [{\Delta ’}] . Also we show that for Peano derivatives the sets A n {A_n} can be chosen to be perfect.

Publisher

American Mathematical Society (AMS)

Subject

Applied Mathematics,General Mathematics

Reference12 articles.

1. Representations of functions by derivatives;Agronsky, S. J.;Trans. Amer. Math. Soc.,1981

2. Lecture Notes in Mathematics;Bruckner, Andrew M.,1978

3. Contribution à la théorie de la dérivation d’ordre supérieur;Corominas, Ernest;Bull. Soc. Math. France,1953

4. The exact Peano derivative;Oliver, H. William;Trans. Amer. Math. Soc.,1954

5. Decomposition of approximate derivatives;O’Malley, Richard J.;Proc.#Amer. Math. Soc.,1978

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Gaussian Riemann Derivatives;Israel Journal of Mathematics;2022-11-28

2. The classification of complex generalized Riemann derivatives;Journal of Mathematical Analysis and Applications;2021-10

3. Relations between Derivatives;Higher Order Derivatives;2012-01-25

4. Decomposition of Derivatives in Several Variables and the Class [Δ′];Journal of Mathematical Analysis and Applications;1999-06

5. On the Ultimate Peano Derivative;Journal of Mathematical Analysis and Applications;1998-02

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3