Lie group representations and harmonic polynomials of a matrix variable

Author:

Ton That Tuong

Abstract

The first part of this paper deals with problems concerning the symmetric algebra of complex-valued polynomial functions on the complex vector space of n by k matrices. In this context, a generalization of the so-called “classical separation of variables theorem” for the symmetric algebra is obtained. The second part is devoted to the study of certain linear representations, on the above linear space (the symmetric algebra) and its subspaces, of the complex general linear group of order k and of its subgroups, namely, the unitary group, and the real and complex special orthogonal groups. The results of the first part lead to generalizations of several well-known theorems in the theory of group representations. The above representation, of the real special orthogonal group, which arises from the right action of this group on the underlying vector space (of the symmetric algebra) of matrices, possesses interesting properties when restricted to the Stiefel manifold. The latter is defined as the orbit (under the action of the real special orthogonal group) of the n by k matrix formed by the first n row vectors of the canonical basis of the k-dimensional real Euclidean space. Thus the last part of this paper is involved with questions in harmonic analysis on this Stiefel manifold. In particular, an interesting orthogonal decomposition of the complex Hilbert space consisting of all square-integrable functions on the Stiefel manifold is also obtained.

Publisher

American Mathematical Society (AMS)

Subject

Applied Mathematics,General Mathematics

Reference28 articles.

1. A. Borel and A. Weil, Séminaire Bourbaki 6ième année: 1953/54, Exposé 100 par J.-P. Serre: Répresentations linéaires et espaces homogènes Kähleriens des groupes de Lie compacts, Secrétariat mathématique, Paris, 1959. MR 28 #1087.

2. Homogeneous vector bundles;Bott, Raoul;Ann. of Math. (2),1957

3. É. Cartan, Leçons sur la géométrie projective complexe, 2ième éd., Gauthier-Villars, Paris, 1950. MR 12, 849.

4. C. Chevalley, Theory of Lie groups. Vol. I, Princeton Math. Ser., vol. 8, Princeton Univ. Press. Princeton, N. J., 1946. MR 7, 412.

Cited by 20 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3