Equivariant spectral triples and Poincaré duality for 𝑆𝑈_{𝑞}(2)

Author:

Chakraborty Partha,Pal Arupkumar

Abstract

Let A \mathcal {A} be the C C^* -algebra associated with S U q ( 2 ) SU_q(2) , let π \pi be the representation by left multiplication on the L 2 L_2 space of the Haar state and let D D be the equivariant Dirac operator for this representation constructed by the authors earlier. We prove in this article that there is no operator other than the scalars in the commutant π ( A ) \pi (\mathcal {A})’ that has bounded commutator with D D . This implies that the equivariant spectral triple under consideration does not admit a rational Poincaré dual in the sense of Moscovici, which in particular means that this spectral triple does not extend to a K K -homology fundamental class for S U q ( 2 ) SU_q(2) . We also show that a minor modification of this equivariant spectral triple gives a fundamental class and thus implements Poincaré duality.

Publisher

American Mathematical Society (AMS)

Subject

Applied Mathematics,General Mathematics

Reference15 articles.

1. Mathematical Sciences Research Institute Publications;Blackadar, Bruce,1998

2. D-branes, RR-fields and duality on noncommutative manifolds;Brodzki, Jacek;Comm. Math. Phys.,2008

3. Equivariant spectral triples on the quantum 𝑆𝑈(2) group;Chakraborty, Partha Sarathi;$K$-Theory,2003

4. On equivariant Dirac operators for 𝑆𝑈_{𝑞}(2);Chakraborty, Partha Sarathi;Proc. Indian Acad. Sci. Math. Sci.,2006

5. Characterization of 𝑆𝑈_{𝑞}(ℓ+1)-equivariant spectral triples for the odd dimensional quantum spheres;Chakraborty, Partha Sarathi;J. Reine Angew. Math.,2008

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. On the Clebsch–Gordan coefficients for the quantum group $${\varvec{U}}_{\varvec{q}}\varvec{(2)}$$;Proceedings - Mathematical Sciences;2023-12-08

2. Operator algebras in India in the past decade;Indian Journal of Pure and Applied Mathematics;2019-08-20

3. K-groups of the quantum homogeneous space SUq(n)∕SUq(n− 2);Pacific Journal of Mathematics;2011-10-29

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3