The lifting problem for affine structures in nilpotent Lie groups

Author:

Boyom Nguiffo B.

Abstract

Affine manifolds occur in several situations in pure and applied mathematics, (e.g. leaves of Lagrangian foliations, completely integrable Hamiltonian systems, linear representations of virtually polycyclic groups, geometric quantization and so on). This work is devoted to left invariant affinely flat structures in Lie groups. We are mainly concerned with the following situation. Let G G and G 0 {G_0} be nilpotent Lie groups of dimension n + 1 n + 1 and n n , respectively and let h : G G 0 h:G \to {G_0} be a continuous homomorphism from G G onto G 0 {G_0} . Given a left invariant affinely flat structure ( G 0 , 0 ) ({G_0},{\nabla _0}) the lifting problem is to discover whether G G has a left invariant affinely flat structure ( G , ) (G,\nabla ) such that h h becomes an affine morphism. In the present work we answer positively when ( G 0 , 0 ) ({G_0},{\nabla _0}) is "normal". Therefore the existence problem for a left invariant complete affinely flat structure in nilpotent Lie groups is solved by applying the following subsequent results. Let A f ( G 0 ) \mathfrak {A}f({G_0}) be the set of left invariant affinely flat structures in the nilpotent Lie group G 0 , ( 1 ) A f ( G 0 ) {G_0},({1^ \circ })\;\mathfrak {A}f({G_0}) \ne \emptyset implies the existence of normal structure ( G 0 , 0 ) A f ( G 0 ) ; ( 2 ) h : G G 0 ({G_0},{\nabla _0}) \in \mathfrak {A}f({G_0});({2^ \circ })\;h:G \to {G_0} being as above every normal structure ( G 0 , 0 ) ({G_0},{\nabla _0}) has a normal lifted in A f ( G ) \mathfrak {A}f(G) .

Publisher

American Mathematical Society (AMS)

Subject

Applied Mathematics,General Mathematics

Reference11 articles.

1. Simply transitive groups of affine motions;Auslander, Louis;Amer. J. Math.,1977

2. N. Bourbaki, Groups et algèbres de Lie, Chapters 7-8.

3. Cohomology of Lie algebras;Hochschild, G.;Ann. of Math. (2),1953

4. J. L. Koszul, Domaine de Vinberg et de Piatetsky Šapiro, Cours Univ. Genève 1966-67.

5. Homologie et cohomologie des algèbres de Lie;Koszul, Jean-Louis;Bull. Soc. Math. France,1950

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. KV-COHOMOLOGY OF KOSZUL–VINBERG ALGEBROIDS AND POISSON MANIFOLDS;International Journal of Mathematics;2005-10

2. On Transitive Left-Symmetric Algebras;Non-Associative Algebra and Its Applications;1994

3. Computational aspects of affine representations for torsion free nilpotent groups via the Seifert construction;Journal of Pure and Applied Algebra;1993-02

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3