A characterization of the invariant measures for an infinite particle system with interactions

Author:

Liggett Thomas M.

Abstract

Let p ( x , y ) p(x,y) be the transition function for a symmetric, irreducible, transient Markov chain on the countable set S. Let η t {\eta _t} be the infinite particle system on S with the simple exclusion interaction and one-particle motion determined by p. A characterization is obtained of all the invariant measures for η t {\eta _t} in terms of the bounded functions on S which are harmonic with respect to p ( x , y ) p(x,y) . Ergodic theorems are proved concerning the convergence of the system to an invariant measure.

Publisher

American Mathematical Society (AMS)

Subject

Applied Mathematics,General Mathematics

Reference7 articles.

1. Sur l’équation de convolution 𝜇=𝜇∗𝜎;Choquet, Gustave;C. R. Acad. Sci. Paris,1960

2. Free energy in a Markovian model of a lattice spin system;Holley, Richard;Comm. Math. Phys.,1971

3. Pressure and Helmholtz free energy in a dynamic model of a lattice gas;Holley, Richard,1972

4. An ergodic theorem for interacting systems with attractive interactions;Holley, Richard;Z. Wahrscheinlichkeitstheorie und Verw. Gebiete,1972

Cited by 26 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Classification of stationary distributions for the stochastic vertex models;Electronic Journal of Probability;2023-01-01

2. Some ergodic theorems for a parabolic Anderson model;Acta Mathematica Sinica, English Series;2012-07-05

3. An ergodic theorem of a parabolic Anderson model driven by Lévy noise;Frontiers of Mathematics in China;2011-11-14

4. Stochastic models for large interacting systems and related correlation inequalities;Proceedings of the National Academy of Sciences;2010-09-08

5. Exclusion processes with multiple interactions;Stochastic Processes and their Applications;2005-07

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3