On the asymptotic behavior of nonlinear wave equations
Author:
Abstract
Positive energy solutions of the Cauchy problem for the equation ◻ u = m 2 u + F ( u ) \square u = {m^2}u + F(u) are considered. With G ( u ) = ∫ 0 u F ( s ) d s G(u) = \smallint _0^uF(s)ds , it is proven that G ( u ) G(u) must be nonnegative in order for uniform decay and the existence of asymptotic “free” solutions to hold. When G ( u ) G(u) is nonnegative and satisfies a growth restriction at infinity, the kinetic and potential energies (with m = 0) are shown to be asymptotically equal. In case F ( u ) F(u) has the form | u | p − 1 u |u{|^{p - 1}}u , scattering theory is shown to be impossible if 1 > p ≤ 1 + 2 n − 1 ( n ≥ 2 ) 1 > p \leq 1 + 2{n^{ - 1}}\;(n \geq 2) .
Publisher
American Mathematical Society (AMS)
Subject
Applied Mathematics,General Mathematics
Link
http://www.ams.org/tran/1973-182-00/S0002-9947-1973-0330782-7/S0002-9947-1973-0330782-7.pdf
Reference14 articles.
1. Equipartition of energy in wave motion;Duffin, R. J.;J. Math. Anal. Appl.,1970
2. An asymptotic property of solutions of wave equations;Goldstein, Jerome A.;Proc. Amer. Math. Soc.,1969
3. Über die nichtlinearen Wellengleichungen der mathematischen Physik;Jörgens, Konrad;Math. Ann.,1959
4. Das Anfangswertproblem im Grossen für eine Klasse nichtlinearer Wellengleichungen;Jörgens, Konrad;Math. Z.,1961
Cited by 40 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. Nonexistence of asymptotically free solutions for nonlinear Schrödinger system;Communications in Analysis and Mechanics;2024
2. Wave and scattering operators for the nonlinear Klein-Gordon equation on a quarter-plane;Journal of Differential Equations;2022-06
3. Dispersive decay for the nonlinear magnetic Schrödinger equation;Nonlinear Analysis;2022-04
4. Nonscattering range for the NLS with inverse square potential;Journal of Mathematical Analysis and Applications;2021-07
5. Continuous trigonometric collocation polynomial approximations with geometric and superconvergence analysis for efficiently solving semi-linear highly oscillatory hyperbolic systems;Calcolo;2021-02-01
1.学者识别学者识别
2.学术分析学术分析
3.人才评估人才评估
"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370
www.globalauthorid.com
TOP
Copyright © 2019-2024 北京同舟云网络信息技术有限公司 京公网安备11010802033243号 京ICP备18003416号-3