Envelopes of holomorphy and holomorphic convexity

Author:

Carmignani Robert

Abstract

This paper is primarily a study of generalized notions of envelope of holomorphy and holomorphic convexity for special (algebraically restricted) subsets of C n {{\mathbf {C}}^n} and in part for arbitrary subsets of C n {{\mathbf {C}}^n} . For any special set S in C n {{\mathbf {C}}^n} , we show that every function holomorphic in a neighborhood of S not only can be holomorphically continued but also holomorphically extended to a neighborhood in C n {{\mathbf {C}}^n} of a maximal set S ~ \tilde {S} , the “envelope of holomorphy” of S, which is also a special set of the same type as S. Formulas are obtained for constructing S ~ \tilde {S} for any special set S. “Holomorphic convexity” is characterized for these special sets. With one exception, the only topological restriction on these special sets is connectivity. Examples are given which illustrate applications of the theorems and help to clarify the concepts of “envelope of holomorphy” and “holomorphic convexity."

Publisher

American Mathematical Society (AMS)

Subject

Applied Mathematics,General Mathematics

Reference12 articles.

1. Princeton Mathematical Series, vol. 10;Bochner, Salomon,1948

2. Complex convexity;Bremermann, H. J.;Trans. Amer. Math. Soc.,1956

3. Construction of the envelopes of holomorphy of arbitrary domains;Bremermann, H. J.;Rev. Mat. Hisp.-Amer. (4),1957

4. H. Cartan, Séminaires École Normale Supérieure, 1951/52, Secrétariat mathématique, Paris, 1953. MR 16, 233.

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3