Some integral inequalities with applications to the imbedding of Sobolev spaces defined over irregular domains

Author:

Adams R. A.

Abstract

This paper examines the possibility of extending the Sobolev Imbedding Theorem to certain classes of domains which fail to have the “cone property” normally required for that theorem. It is shown that no extension is possible for certain types of domains (e.g. those with exponentially sharp cusps or which are unbounded and have finite volume), while extensions are obtained for other types (domains with less sharp cusps). These results are developed via certain integral inequalities which generalize inequalities due to Hardy and to Sobolev, and are of some interest in their own right. The paper is divided into two parts. Part I establishes the integral inequalities; Part II deals with extensions of the imbedding theorem. Further introductory information may be found in the first section of each part.

Publisher

American Mathematical Society (AMS)

Subject

Applied Mathematics,General Mathematics

Reference14 articles.

1. Some imbedding theorems for Sobolev spaces;Adams, R. A.;Canadian J. Math.,1971

2. Unbounded Soboleff regions;Andersson, Rolf;Math. Scand.,1963

3. C. W. Clark, Introduction to Sobolev spaces, Seminar Notes, University of British Columbia, Vancouver, 1968.

4. Proprietà di alcune classi di funzioni in più variabili;Gagliardo, Emilio;Ricerche Mat.,1958

5. Embedding theorems for a region with null angular points;Globenko, I. G.;Soviet Math. Dokl.,1960

Cited by 15 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. On Sobolev spaces of bounded subanalytic manifolds;Mathematische Annalen;2024-02-14

2. Bootstrap method for misspecified ergodic Lévy driven stochastic differential equation models;Annals of the Institute of Statistical Mathematics;2022-11-10

3. Noise inference for ergodic Lévy driven SDE;Electronic Journal of Statistics;2022-01-01

4. Statistical inference for misspecified ergodic Lévy driven stochastic differential equation models;Stochastic Processes and their Applications;2019-10

5. Non-Gaussian quasi-likelihood estimation of SDE driven by locally stable Lévy process;Stochastic Processes and their Applications;2019-03

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3