Normally flat deformations

Author:

Bennett Bruce

Abstract

We study flat families Z / T Z/T , together with a section σ : T Z \sigma :T \to Z such that the normal cone to the image of σ \sigma in Z is flat over T. Such a family is called a “normally flat deformation (along σ \sigma )"; it corresponds intuitively to a deformation of a singularity which preserves the Hilbert-Samuel function. We construct the versal normally flat deformation of an isolated singularity (X,x) in terms of the flat strata of the relative jets of the “usual” versal deformation of X. We give explicit criteria, in terms of equations, for a flat family to be normally flat along a given section. These criteria are applied to demonstrate the smoothness of normally flat deformation theoryand of the canonical map from it to the cone deformation theory of the tangent cone-in the case of strict complete intersections. Finally we study the tangent space to the normally flat deformation theory, expressing it as the sum of two spaces: The first is a piece of a certain filtration of the tangent space to the usual deformation theory of X; the second is the tangent space to the special fibre of the canonical map N S N \to S , where N (resp. S) is the parameter space for the versal normally flat deformation of (X, x) (resp. for the versal deformation of X). We discuss the relation of this second space to infinitesimal properties of sections.

Publisher

American Mathematical Society (AMS)

Subject

Applied Mathematics,General Mathematics

Reference16 articles.

1. A. Grothendieck and J. Dieudonné, Éléments de géométrie algébrique, Inst. Hautes Études Sci. Publ. Math. No. 32 (1967). MR 39 #220.

2. Annals of Mathematics Studies, No. 59;Mumford, David,1966

3. Further pathologies in algebraic geometry;Mumford, David;Amer. J. Math.,1962

4. Functors of Artin rings;Schlessinger, Michael;Trans. Amer. Math. Soc.,1968

5. \bysame, Thesis, Harvard Univ., Cambridge, Mass., 1964.

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3