Efficient generation of maximal ideals in polynomial rings

Author:

Davis E. D.,Geramita A. V.

Abstract

The cardinality of a minimal basis of an ideal I is denoted ν ( I ) \nu (I) . Let A be a polynomial ring in n > 0 n > 0 variables with coefficients in a noetherian (commutative with 1 0 1 \ne 0 ) ring R, and let M be a maximal ideal of A. In general ν ( M A M ) + 1 ν ( M ) ν ( M A M ) \nu (M{A_M}) + 1 \geqslant \nu (M) \geqslant \nu (M{A_M}) . This paper is concerned with the attaining of equality with the lower bound. It is shown that equality is attained in each of the following cases: (1) A M {A_M} is not regular (valid even if A is not a polynomial ring), (2) M R M \cap R is maximal in R and (3) n > 1 n > 1 . Equality may fail for n = 1 n = 1 , even for R of dimension 1 (but not regular), and it is an open question whether equality holds for R regular of dimension > 1 > 1 . In case n = 1 n = 1 and dim ( R ) = 2 \dim (R) = 2 the attaining of equality is related to questions in the K-theory of projective modules. Corollary to (1) and (2) is the confirmation, for the case of maximal ideals, of one of the Eisenbud-Evans conjectures; namely, ν ( M ) max { ν ( M A M ) , dim ( A ) } \nu (M) \leqslant \max \{ \nu (M{A_M}),\dim (A)\} . Corollary to (3) is that for R regular and n > 1 n > 1 , every maximal ideal of A is generated by a regular sequence—a result well known (for all n 1 n \geqslant 1 ) if R is a field (and somewhat less well known for R a Dedekind domain).

Publisher

American Mathematical Society (AMS)

Subject

Applied Mathematics,General Mathematics

Reference22 articles.

1. A note on finite ring extensions;Artin, Emil;J. Math. Soc. Japan,1951

2. Libération des modules projectifs sur certains anneaux de polynômes;Bass, Hyman,1975

3. Grothendieck groups and Picard groups of abelian group rings;Bass, Hyman;Ann. of Math. (2),1967

4. Seminormalità e singolarità ordinarie;Bombieri, E.,1973

5. Ideals of the principal class, 𝑅-sequences and a certain monoidal transformation;Davis, Edward D.;Pacific J. Math.,1967

Cited by 10 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3