Ergodic equivalence relations, cohomology, and von Neumann algebras. I

Author:

Feldman Jacob,Moore Calvin C.

Abstract

Let ( X , B ) (X,\mathcal {B}) be a standard Borel space, R X × X R \subset X \times X an equivalence relation B × B \in \mathcal {B} \times \mathcal {B} . Assume each equivalence class is countable. Theorem 1: \exists a countable group G of Borel isomorphisms of ( X , B ) (X,\mathcal {B}) so that R = { ( x , g x ) : g G } R = \{ (x,gx):g \in G\} . G is far from unique. However, notions like invariance and quasi-invariance and R-N derivatives of measures depend only on R, not the choice of G. We develop some of the ideas of Dye [1], [2] and Krieger [1]-[5] in a fashion explicitly avoiding any choice of G; we also show the connection with virtual groups. A notion of “module over R” is defined, and we axiomatize and develop a cohomology theory for R with coefficients in such a module. Surprising application (contained in Theorem 7): let α , β \alpha ,\beta be rationally independent irrationals on the circle T \mathbb {T} , and f Borel: T T \mathbb {T} \to \mathbb {T} . Then \exists Borel g , h : T T g,h:\mathbb {T} \to \mathbb {T} with f ( x ) = ( g ( a x ) / g ( x ) ) ( h ( β x ) / h ( x ) ) f(x) = (g(ax)/g(x))(h(\beta x)/h(x)) a.e. The notion of “skew product action” is generalized to our context, and provides a setting for a generalization of the Krieger invariant for the R-N derivative of an ergodic transformation: we define, for a cocycle c on R with values in the group A, a subgroup of A depending only on the cohomology class of c, and in Theorem 8 identify this with another subgroup, the “normalized proper range” of c, defined in terms of the skew action. See also Schmidt [1].

Publisher

American Mathematical Society (AMS)

Subject

Applied Mathematics,General Mathematics

Reference32 articles.

1. Representation of ergodic flows;Ambrose, Warren;Ann. of Math. (2),1941

2. Ergodic skew product transformations on the torus;Anzai, Hirotada;Osaka Math. J.,1951

3. Unitary representations of solvable Lie groups;Auslander, Louis;Mem. Amer. Math. Soc.,1966

4. Une classification des facteurs de type 𝐼𝐼𝐼;Connes, Alain;Ann. Sci. \'{E}cole Norm. Sup. (4),1973

5. Flots des poids sur les facteurs de type 𝐼𝐼𝐼;Connes, Alain;C. R. Acad. Sci. Paris S\'{e}r. A,1974

Cited by 266 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3