P.R.-regulated systems of notation and the subrecursive hierarchy equivalence property

Author:

Zemke Fred

Abstract

We can attempt to extend the Grzegorczyk Hierarchy transfinitely by defining a sequence of functions indexed by the elements of a system of notation S \mathcal {S} , using either iteration (majorization) or enumeration techniques to define the functions. (The hierarchy is then the sequence of classes of functions elementary in the functions of the sequence of functions.) In this paper we consider two sequences { F s } s S {\{ {F_s}\} _{s \in \mathcal {S}}} and { G s } s S {\{ {G_s}\} _{s \in \mathcal {S}}} defined by iteration and a sequence { E s } s S {\{ {E_s}\} _{s \in \mathcal {S}}} defined by enumeration; the corresponding hierarchies are { F s } , { G s } , { E s } \{ {\mathcal {F}_s}\} ,\{ {\mathcal {G}_s}\} ,\{ \mathcal {E}{_s}\} . We say that S \mathcal {S} has the subrecursive hierarchy equivalence property if these two conditions hold: (I) E s = F s = G s {\mathcal {E}_s} = {\mathcal {F}_s} = {\mathcal {G}_s} for all s S s \in \mathcal {S} ; (II) E s = E t {\mathcal {E}_s} = {\mathcal {E}_t} for all s , t S s,t \in \mathcal {S} such that | s | = | t | ( | s | |s| = |t|(|s| is the ordinal denoted by s). We show that a certain type of system of notation, called p.r.-regulated, has the subrecursive hierarchy equivalence property. We present a nontrivial example of such a system of notation, based on Schütte’s Klammersymbols. The resulting hierarchy extends those previously in print, which used the so-called standard fundamental sequences for limits > ε 0 > {\varepsilon _0} .

Publisher

American Mathematical Society (AMS)

Subject

Applied Mathematics,General Mathematics

Reference15 articles.

1. On a subrecursive hierarchy and primitive recursive degrees;Axt, Paul;Trans. Amer. Math. Soc.,1959

2. Classifications of recursive functions by means of hierarchies;Feferman, Solomon;Trans. Amer. Math. Soc.,1962

3. Systems of predicative analysis. II. Representations of ordinals;Feferman, Solomon;J. Symbolic Logic,1968

4. Some classes of recursive functions;Grzegorczyk, Andrzej;Rozprawy Mat.,1953

5. S. C. Kleene, On notation for ordinals, J. Symbolic Logic 3 (1938), 150-155.

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3