Weierstrass normal forms and invariants of elliptic surfaces

Author:

Kas Arnold

Abstract

Let π : S B \pi :S \to B be an elliptic surface with a section σ : B S \sigma :B \to S . Let L 1 B {L^{ - 1}} \to B be the normal bundle of σ ( B ) \sigma (B) in S, and let W = P ( L 2 L 3 1 ) W = P({L^{ \otimes 2}} \oplus {L^{ \otimes 3}} \oplus 1) be a P 2 {{\mathbf {P}}^2} -bundle over B. Let S {S^\ast } be the surface obtained from S by contracting those components of fibres of S which do not intersect σ ( B ) \sigma (B) . Then S {S^\ast } may be imbedded in W and defined by a “Weierstrass equation": \[ y 2 z = x 3 g 2 x z 2 g 3 z 3 {y^2}z = {x^3} - {g_2}x{z^2} - {g_3}{z^3} \] where g 2 H 0 ( B , O ( L 4 ) ) {g_2} \in {H^0}(B,\mathcal {O}({L^{ \otimes 4}})) and g 3 H 0 ( B , O ( L 6 ) ) {g_3} \in {H^0}(B,\mathcal {O}({L^{ \otimes 6}})) . The only singularities (if any) of S {S^\ast } are rational double points. The triples ( L , g 2 , g 3 ) (L,{g_2},{g_3}) form a set of invariants for elliptic surfaces with sections, and a complete set of invariants is given by { ( L , g 2 , g 3 ) } / G \{ (L,{g_2},{g_3})\} /G where G C × Aut ( B ) G \cong {{\mathbf {C}}^\ast } \times {\operatorname {Aut}}\;(B) .

Publisher

American Mathematical Society (AMS)

Subject

Applied Mathematics,General Mathematics

Reference3 articles.

1. Über die Auflösung gewisser Singularitäten von holomorphen Abbildungen;Brieskorn, Egbert;Math. Ann.,1966

2. Lecture Notes in Pure and Applied Mathematics, Vol. 4;Hirzebruch, F.,1971

3. K. Kodaira, On compact analytic surfaces. II, Ann. of Math. (2) 77 (1963), 563-626. MR 32 #1730.

Cited by 14 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Monodromy of rational curves on K3 surfaces of low genus;Journal of Pure and Applied Algebra;2022-08

2. PL DENSITY INVARIANT FOR TYPE II DEGENERATING K3 SURFACES, MODULI COMPACTIFICATION AND HYPER-KÄHLER METRIC;Nagoya Mathematical Journal;2021-11-03

3. The Kodaira dimension and singularities of moduli of stable sheaves on some elliptic surfaces;International Journal of Mathematics;2020-12-23

4. A Small and Non-simple Geometric Transition;Mathematical Physics, Analysis and Geometry;2017-04-08

5. Elliptic K3 surfaces as dynamical models and their Hamiltonian monodromy;Central European Journal of Mathematics;2012-04-10

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3