Lamé differential equations and electrostatics

Author:

Dimitrov Dimitar,Van Assche Walter

Abstract

The problem of existence and uniqueness of polynomial solutions of the Lamé differential equation A ( x ) y + 2 B ( x ) y + C ( x ) y = 0 , \begin{equation*} A(x) y^{\prime \prime } + 2 B(x) y’ + C(x) y = 0, \end{equation*} where A ( x ) , B ( x ) A(x), B(x) and C ( x ) C(x) are polynomials of degree p + 1 , p p+1, p and p 1 p-1 , is under discussion. We concentrate on the case when A ( x ) A(x) has only real zeros a j a_{j} and, in contrast to a classical result of Heine and Stieltjes which concerns the case of positive coefficients r j r_{j} in the partial fraction decomposition B ( x ) / A ( x ) = j = 0 p r j / ( x a j ) B(x)/A(x) = \sum _{j=0}^{p} r_{j}/(x-a_{j}) , we allow the presence of both positive and negative coefficients r j r_{j} . The corresponding electrostatic interpretation of the zeros of the solution y ( x ) y(x) as points of equilibrium in an electrostatic field generated by charges r j r_{j} at a j a_{j} is given. As an application we prove that the zeros of the Gegenbauer-Laurent polynomials are the points of unique equilibrium in a field generated by two positive and two negative charges.

Publisher

American Mathematical Society (AMS)

Subject

Applied Mathematics,General Mathematics

Cited by 27 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. The Stieltjes–Fekete Problem and Degenerate Orthogonal Polynomials;International Mathematics Research Notices;2024-03-14

2. Electrostatic Partners and Zeros of Orthogonal and Multiple Orthogonal Polynomials;Constructive Approximation;2022-12-30

3. Stable Equilibria for the Roots of the Symmetric Continuous Hahn and Wilson Polynomials;Orthogonal Polynomials: Current Trends and Applications;2021

4. FQHE and tt* geometry;Journal of High Energy Physics;2019-12

5. Complementary Romanovski-Routh polynomials: From orthogonal polynomials on the unit circle to Coulomb wave functions;Proceedings of the American Mathematical Society;2019-03-07

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3