A bifurcation result for harmonic maps from an annulus to 𝑆² with not symmetric boundary data

Author:

Greco C.

Abstract

We consider the problem of minimizing the energy of the maps u ( r , θ ) u(r,\theta ) from the annulus Ω ρ = B 1 B ¯ ρ \Omega _\rho =B_1\backslash \bar B_\rho to S 2 S^2 such that u ( r , θ ) u(r,\theta ) is equal to ( cos θ , sin θ , 0 ) (\cos \theta ,\sin \theta ,0) for r = ρ r=\rho , and to ( cos ( θ + θ 0 ) (\cos (\theta +\theta _0) , sin ( θ + θ 0 ) , 0 ) \sin (\theta +\theta _0),0) for r = 1 r=1 , where θ 0 [ 0 , π ] \theta _0\in [0,\pi ] is a fixed angle. We prove that the minimum is attained at a unique harmonic map u ρ u_\rho which is a planar map if log 2 ρ + 3 θ 0 2 π 2 \log ^2\rho +3\theta _0^2\le \pi ^2 , while it is not planar in the case log 2 ρ + θ 0 2 > π 2 \log ^2\rho +\theta _0^2>\pi ^2 . Moreover, we show that u ρ u_\rho tends to v ¯ \bar v as ρ 0 \rho \to 0 , where v ¯ \bar v minimizes the energy of the maps v ( r , θ ) v(r,\theta ) from B 1 B_1 to S 2 S^2 , with the boundary condition v ( 1 , θ ) = ( cos ( θ + θ 0 ) v(1,\theta )=(\cos (\theta +\theta _0) , sin ( θ + θ 0 ) , 0 ) \sin (\theta +\theta _0),0) .

Publisher

American Mathematical Society (AMS)

Subject

Applied Mathematics,General Mathematics

Reference5 articles.

1. Bifurcation analysis of minimizing harmonic maps describing the equilibrium of nematic phases between cylinders;Bethuel, F.;Arch. Rational Mech. Anal.,1992

2. Large solutions for harmonic maps in two dimensions;Brezis, Haïm;Comm. Math. Phys.,1983

3. A new symmetrization method for vector valued maps;Kaniel, Shmuel;C. R. Acad. Sci. Paris S\'{e}r. I Math.,1992

4. On the symmetry of minimizing harmonic maps in 𝑁 dimensions;Sandier, Étienne;Differential Integral Equations,1993

5. On the uniqueness of minimizing harmonic maps to a closed hemisphere;Sandier, Etienne;Calc. Var. Partial Differential Equations,1994

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. A Note on Bifurcation for Harmonic Maps on Annular Domains;Mediterranean Journal of Mathematics;2014-12-19

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3