Rational homotopy type of subspace arrangements with a geometric lattice

Author:

Debongnie Gery

Abstract

Let A = { x 1 , , x n } \mathcal {A} = \{x_1, \dotsc , x_n\} be a subspace arrangement with a geometric lattice such that codim ( x ) 2 \operatorname {codim}(x) \geq 2 for every x A x \in \mathcal {A} . Using rational homotopy theory, we prove that the complement M ( A ) M(\mathcal {A}) is rationally elliptic if and only if the sum x 1 + + x n x_1^\perp + \dotso + x_n^\perp is a direct sum. The homotopy type of M ( A ) M(\mathcal {A}) is also given: it is a product of odd-dimensional spheres. Finally, some other equivalent conditions are given, such as Poincaré duality. Those results give a complete description of arrangements (with a geometric lattice and with the codimension condition on the subspaces) such that M ( A ) M(\mathcal {A}) is rationally elliptic, and show that most arrangements have a hyperbolic complement.

Publisher

American Mathematical Society (AMS)

Subject

Applied Mathematics,General Mathematics

Reference6 articles.

1. Graduate Texts in Mathematics;Bredon, Glen E.,1993

2. Formal spaces with finite-dimensional rational homotopy;Félix, Yves;Trans. Amer. Math. Soc.,1982

3. Graduate Texts in Mathematics;Félix, Yves,2001

4. Infinitesimal computations in topology;Sullivan, Dennis;Inst. Hautes \'{E}tudes Sci. Publ. Math.,1977

5. Small rational model of subspace complement;Yuzvinsky, Sergey;Trans. Amer. Math. Soc.,2002

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Ranks of homotopy and cohomology groups for rationally elliptic spaces and algebraic varieties;Homology, Homotopy and Applications;2022

2. Self-products of rationally elliptic spaces and inequalities between the ranks of homotopy and homology groups;Topology and its Applications;2021-12

3. On the rational type of moment-angle complexes;Proceedings of the Steklov Institute of Mathematics;2014-10

4. On rational normal curves in projective space;Journal of the London Mathematical Society;2009-05-04

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3