Equifocality of a singular Riemannian foliation

Author:

Alexandrino Marcos,Töben Dirk

Abstract

A singular foliation on a complete Riemannian manifold M M is said to be Riemannian if each geodesic that is perpendicular to a leaf at one point remains perpendicular to every leaf it meets. We prove that the regular leaves are equifocal, i.e., the end point map of a normal foliated vector field has constant rank. This implies that we can reconstruct the singular foliation by taking all parallel submanifolds of a regular leaf with trivial holonomy. In addition, the end point map of a normal foliated vector field on a leaf with trivial holonomy is a covering map. These results generalize previous results of the authors on singular Riemannian foliations with sections.

Publisher

American Mathematical Society (AMS)

Subject

Applied Mathematics,General Mathematics

Reference13 articles.

1. Integrable Riemannian submersion with singularities;Alexandrino, Marcos M.;Geom. Dedicata,2004

2. Singular Riemannian foliations with sections;Alexandrino, Marcos M.;Illinois J. Math.,2004

3. Generalizations of isoparametric foliations;Alexandrino, Marcos M.;Mat. Contemp.,2005

4. Proofs of conjectures about singular Riemannian foliations;Alexandrino, Marcos M.;Geom. Dedicata,2006

5. Singular Riemannian foliations on simply connected spaces;Alexandrino, Marcos M.;Differential Geom. Appl.,2006

Cited by 19 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. On equifocal Finsler submanifolds and analytic maps;Israel Journal of Mathematics;2023-08-23

2. On mean curvature flow of singular Riemannian foliations: Noncompact cases;Differential Geometry and its Applications;2020-10

3. Laplacian algebras, manifold submetries and the Inverse Invariant Theory Problem;Geometric and Functional Analysis;2020-04

4. On singular Finsler foliation;Annali di Matematica Pura ed Applicata (1923 -);2018-07-04

5. Algebraic nature of singular Riemannian foliations in spheres;Journal für die reine und angewandte Mathematik (Crelles Journal);2016-05-15

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3