New results on the least common multiple of consecutive integers

Author:

Farhi Bakir,Kane Daniel

Abstract

When studying the least common multiple of some finite sequences of integers, the first author introduced the interesting arithmetic functions g k g_k ( k N ) (k \in \mathbb {N}) , defined by g k ( n ) := n ( n + 1 ) ( n + k ) lcm ( n , n + 1 , , n + k ) g_k(n) := \frac {n (n + 1) \dots (n + k)} {\operatorname {lcm}(n, n+1, \dots , n + k)} ( n N { 0 } ) (\forall n \in \mathbb {N} \setminus \{0\}) . He proved that for each k N k \in \mathbb {N} , g k g_k is periodic and k ! k! is a period of g k g_k . He raised the open problem of determining the smallest positive period P k P_k of g k g_k . Very recently, S. Hong and Y. Yang improved the period k ! k! of g k g_k to lcm ( 1 , 2 , , k ) \operatorname {lcm}(1 , 2, \dots , k) . In addition, they conjectured that P k P_k is always a multiple of the positive integer lcm ( 1 , 2 , , k , k + 1 ) k + 1 \frac {\operatorname {lcm}(1 , 2 , \dots , k , k + 1)}{k + 1} . An immediate consequence of this conjecture is that if ( k + 1 ) (k + 1) is prime, then the exact period of g k g_k is precisely equal to lcm ( 1 , 2 , , k ) \operatorname {lcm}(1 , 2 , \dots , k) .

In this paper, we first prove the conjecture of S. Hong and Y. Yang and then we give the exact value of P k P_k ( k N ) (k \in \mathbb {N}) . We deduce, as a corollary, that P k P_k is equal to the part of lcm ( 1 , 2 , , k ) \operatorname {lcm}(1 , 2 , \dots , k) not divisible by some prime.

Publisher

American Mathematical Society (AMS)

Subject

Applied Mathematics,General Mathematics

Reference10 articles.

Cited by 17 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. On the least common multiple of several consecutive values of a polynomial;St. Petersburg Mathematical Journal;2023-03-22

2. Further Results on a Curious Arithmetic Function;Journal of Mathematics;2020-08-25

3. New lower bounds for the least common multiple of polynomial sequences;Journal of Number Theory;2017-06

4. Newton representation of functions over natural integers having integral difference ratios;International Journal of Number Theory;2015-10-21

5. On the lcm-analog of binomial coefficient;Asian-European Journal of Mathematics;2014-12

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3