Dirichlet-Neumann-impedance boundary value problems arising in rectangular wedge diffraction problems

Author:

Castro L.,Kapanadze D.

Abstract

Boundary value problems originated by the diffraction of an electromagnetic (or acoustic) wave by a rectangular wedge with faces of possible different kinds are analyzed in a Sobolev space framework. The boundary value problems satisfy the Helmholtz equation in the interior (Lipschitz) wedge domain, and are also subject to different combinations of boundary conditions on the faces of the wedge. Namely, the following types of boundary conditions will be under study: Dirichlet-Dirichlet, Neumann-Neumann, Neumann-Dirichlet, Impedance-Dirichlet, and Impedance-Neumann. Potential theory (combined with an appropriate use of extension operators) leads to the reduction of the boundary value problems to integral equations of Fredholm type. Thus, the consideration of single and double layer potentials together with certain reflection operators originate pseudo-differential operators which allow the proof of existence and uniqueness results for the boundary value problems initially posed. Furthermore, explicit solutions are given for all the problems under consideration, and regularity results are obtained for these solutions.

Publisher

American Mathematical Society (AMS)

Subject

Applied Mathematics,General Mathematics

Reference23 articles.

1. Pitman Research Notes in Mathematics Series;Budaev, Bair,1995

2. L.P. Castro and D. Kapanadze, Wave diffraction by a strip with first and second kind boundary conditions: the real wave number case, Math. Nachr., to appear, 12 pp.

3. On wave diffraction by a half-plane with different face impedances;Castro, L. P.;Math. Methods Appl. Sci.,2007

4. The potential method for the reactance wave diffraction problem in a scale of spaces;Castro, Luis P.;Georgian Math. J.,2006

5. Explicit solution of a Dirichlet-Neumann wedge diffraction problem with a strip;Castro, L. P.;J. Integral Equations Appl.,2003

Cited by 21 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3