On the solvability of a nonlinear second-order elliptic equation at resonance

Author:

Kuo Chung-Cheng

Abstract

We study the existence of solutions of the Neumann problem for semilinear second-order elliptic equations at resonance in which the nonlinear terms may grow superlinearly in one of the directions u u\to \infty and u u\to -\infty , and sublinearly in the other. Solvability results are obtained under assumptions either with or without a Landesman-Lazer condition. The proofs are based on degree-theoretic arguments.

Publisher

American Mathematical Society (AMS)

Subject

Applied Mathematics,General Mathematics

Reference9 articles.

1. Estimates near the boundary for solutions of elliptic partial differential equations satisfying general boundary conditions. I;Agmon, S.;Comm. Pure Appl. Math.,1959

2. Double resonance in semilinear elliptic problems;Berestycki, Henri;Comm. Partial Differential Equations,1981

3. Perturbations of second order linear elliptic problems by unbounded nonlinearities;Gupta, Chaitan P.;Nonlinear Anal.,1982

4. Nonlinear perturbations of second order linear elliptic boundary value problems;Hirano, Norimichi;Houston J. Math.,1988

5. Nonlinear second order elliptic partial differential equations at resonance;Iannacci, R.;Trans. Amer. Math. Soc.,1989

Cited by 31 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Some existence theorems for semilinear Neumann problems with Landesman-Lazer condition revisited;Filomat;2020

2. Multiplicity results and qualitative properties for Neumann semilinear elliptic problems;Journal of Mathematical Analysis and Applications;2018-12

3. Spectrum of Differential Operators;Topological and Variational Methods with Applications to Nonlinear Boundary Value Problems;2013-10-17

4. Regularity Theorems and Maximum Principles;Topological and Variational Methods with Applications to Nonlinear Boundary Value Problems;2013-10-17

5. Bifurcation Theory;Topological and Variational Methods with Applications to Nonlinear Boundary Value Problems;2013-10-17

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3