A sum packing problem of Erdös and the Conway-Guy sequence

Author:

Bohman Tom

Abstract

A set S S of positive integers has distinct subset sums if the set { x X x : X S } \left \{ \sum _{x \in X} x : X \subset S \right \} has 2 | S | 2^{|S|} distinct elements. Let \[ f ( n ) = min { max S : | S | = n and S has\hskip 2mm distinct\hskip 2mm subset \hskip 2mm sums } . f(n) = \min \{ \max S: |S|=n \hskip 2mm \text {and} \hskip 2mm S \hskip 2mm \text {has\hskip 2mm distinct\hskip 2mm subset \hskip 2mm sums}\}. \] In 1931 Paul Erdős conjectured that f ( n ) c 2 n f(n) \ge c2^{n} for some constant c c . In 1967 John Conway and Richard Guy constructed an interesting sequence of sets of integers. They conjectured that these sets have distinct subset sums and that they are close to the best possible (with respect to largest element). We prove that sets from this sequence have distinct subset sums. We also present some variations of this construction that give microscopic improvements in the best known upper bound on f ( n ) f(n) .

Publisher

American Mathematical Society (AMS)

Subject

Applied Mathematics,General Mathematics

Reference8 articles.

1. A Charles Griffin Book;Lee, Peter M.,1992

2. [B] T. Bohman, A Construction For Sets of Integers With Distinct Subset Sums, in preparation.

3. [CG] J.H. Conway and R.K. Guy, Sets of natural numbers with distinct sums, Notices Amer. Math. Soc. 15(1968), 345.

4. [E1] P. Erdős, personal communication.

5. Untersuchungen über reinverzweigte Erweiterungen diskret bewerteter perfekter Körper;Arf, Cahit;J. Reine Angew. Math.,1939

Cited by 17 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. New Support Size Bounds and Proximity Bounds for Integer Linear Programming;Lecture Notes in Computer Science;2024

2. Some remarks on the Erdős Distinct subset sums problem;International Journal of Number Theory;2023-06-07

3. Dimension of a Subset of Residue Classes;2020 IEEE Information Theory Workshop (ITW);2021-04-11

4. Equal-Subset-Sum Faster Than the Meet-in-the-Middle;LEIBNIZ INT PR INFOR;2019

5. Number Balancing is as Hard as Minkowski’s Theorem and Shortest Vector;Integer Programming and Combinatorial Optimization;2017

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3