Mean theoretic approach to the grand Furuta inequality

Author:

Fujii Masatoshi,Kamei Eizaburo

Abstract

Very recently, Furuta obtained the grand Furuta inequality which is a parameteric formula interpolating the Furuta inequality and the Ando-Hiai inequality as follows : If A B 0 A \ge B \ge 0 and A A is invertible, then for each t [ 0 , 1 ] t \in [0,1] , F p , t ( A , B , r , s ) = A r / 2 { A r / 2 ( A t / 2 B p A t / 2 ) s A r / 2 } 1 t + r ( p t ) s + r A r / 2 \begin{equation*}F_{p,t}(A,B,r,s) = A^{-r/2}\{A^{r/2}(A^{-t/2}B^{p}A^{-t/2})^{s}A ^{r/2}\}^{\frac {1-t+r}{(p-t)s+r}}A^{-r/2} \end{equation*} is a decreasing function of both r r and s s for all r t ,   p 1 r \ge t, ~p \ge 1 and s 1 s \ge 1 . In this note, we employ a mean theoretic approach to the grand Furuta inequality. Consequently we propose a basic inequality, by which we present a simple proof of the grand Furuta inequality.

Publisher

American Mathematical Society (AMS)

Subject

Applied Mathematics,General Mathematics

Reference17 articles.

1. On some operator inequalities;Ando, T.;Math. Ann.,1987

2. Log majorization and complementary Golden-Thompson type inequalities;Ando, Tsuyoshi;Linear Algebra Appl.,1994

3. Furuta’s inequality and its mean theoretic approach;Fujii, Masatoshi;J. Operator Theory,1990

4. Operator functions associated with Furuta’s inequality;Fujii, Masatoshi;Linear Algebra Appl.,1991

5. Furuta’s inequality and its application to Ando’s theorem;Fujii, Masatoshi;Linear Algebra Appl.,1993

Cited by 27 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Further generalizations of Bebiano–Lemos–Providência inequality;Advances in Operator Theory;2022-05-20

2. Ando-Hiai Inequality: Extensions and Applications;Trends in Mathematics;2022

3. Matrix inequalities including grand Furuta inequality via Karcher mean;Journal of Mathematical Inequalities;2014

4. A satellite of the grand Furuta inequality and its application;Linear Algebra and its Applications;2013-02

5. Comprehensive survey on an order preserving operator inequality;Banach Journal of Mathematical Analysis;2013

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3