Integral equations, implicit functions, and fixed points

Author:

Burton T.

Abstract

The problem is to show that (1) V ( t , x ) = S ( t , 0 t H ( t , s , x ( s ) ) d s ) V(t,x) = S(t, \int _0^t H(t, s, x(s)) \, ds ) has a solution, where V V defines a contraction, V ~ \tilde V , and S S defines a compact map, S ~ \tilde S . A fixed point of P φ = S ~ φ + ( I V ~ ) φ P \varphi = \tilde S \varphi + (I - \tilde V) \varphi would solve the problem. Such equations arise naturally in the search for a solution of f ( t , x ) = 0 f(t, x) = 0 where f ( 0 , 0 ) = 0 f(0,0) = 0 , but f ( 0 , 0 ) / x = 0 \partial f(0,0) / \partial x = 0 so that the standard conditions of the implicit function theorem fail. Now P φ = S ~ φ + ( I V ~ ) φ P \varphi = \tilde S \varphi + ( I - \tilde V) \varphi would be in the form for a classical fixed point theorem of Krasnoselskii if I V ~ I - \tilde V were a contraction. But I V ~ I - \tilde V fails to be a contraction for precisely the same reasons that the implicit function theorem fails. We verify that I V ~ I - \tilde V has enough properties that an extension of Krasnoselskii’s theorem still holds and, hence, (1) has a solution. This substantially improves the classical implicit function theorem and proves that a general class of integral equations has a solution.

Publisher

American Mathematical Society (AMS)

Subject

Applied Mathematics,General Mathematics

Reference9 articles.

1. Integral Equations and Applications

2. Some problems of nonlinear analysis;Krasnosel′skiĭ, M. A.,1958

Cited by 70 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. The Banach Fixed Point Theorem: selected topics from its hundred-year history;Revista de la Real Academia de Ciencias Exactas, Físicas y Naturales. Serie A. Matemáticas;2024-07-09

2. On the Extended Version of Krasnoselśkiĭ’s Theorem for Kannan-Type Equicontractive Mappings;Mathematics;2023-04-13

3. Weighted Norms In Advanced Volterra Difference Equations;Springer Proceedings in Mathematics & Statistics;2023

4. Large Contractions and Surjectivity in Banach Spaces;Springer Proceedings in Mathematics & Statistics;2023

5. Relation theoretic contractions and their applications in b-metric like spaces;Journal of Applied Analysis;2022-01-28

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3