James maps, Segal maps, and the Kahn-Priddy theorem

Author:

Caruso J.,Cohen F. R.,May J. P.,Taylor L. R.

Abstract

The standard combinatorial approximation C ( R n , X ) C({R^n},X) to Ω n Σ n X {\Omega ^n}{\Sigma ^n}X is a filtered space with easily understood filtration quotients D q ( R n , X ) {D_q}({R^n},X) . Stably, C ( R n , X ) C({R^n},X) splits as the wedge of the D q ( R n , X ) {D_q}({R^n},X) . We here analyze the multiplicative properties of the James maps which give rise to the splitting and of various related combinatorially derived maps between iterated loop spaces. The target of the total James map \[ j = (j_q): \Omega ^n \Sigma ^n X \bigtimes _{q \geqslant 0} \Omega ^{2nq} \Sigma ^{2nq} D_q(R^n, X) \] is a ring space, and j j is an exponential H H -map. There is a total Segal map \[ s = \bigtimes _{q \geqslant 0} \;{s_{q}}:\bigtimes _{q \geqslant 0} \;{\Omega ^{2nq}}\,{\Sigma ^{2nq}}{D_q}({R^{n}},X)\; \bigtimes _{q \geqslant 0} \;\Omega ^{3nq}\,\Sigma ^{3nq}{X^{[q]}}\] which is a ring map between ring spaces. There is a total partial power map \[ k = ({k_q}): {\Omega ^{n}}\,{\Sigma ^{n}}X \to \bigtimes _{q \geqslant 0} \;{\Omega ^{n\,q}}\,{\Sigma ^{n\,q}}{X^{[q]}}\] which is an exponential H H -map. There is a noncommutative binomial theorem for the computation of the smash power Ω n Σ n X Ω n q Σ n q X [ q ] {\Omega ^n}{\Sigma ^n}X \to {\Omega ^{nq}}{\Sigma ^{nq}}{X^{[q]}} in terms of the k m {k_m} for m q m \leqslant q . The composite of s s and j j agrees with the composite of k k and the natural inclusion \[ \bigtimes _{q \geqslant 0} \;{\Omega ^{n\,q}}\,{\Sigma ^{n\,q}}{X^{[q]}} \to \bigtimes _{q \geqslant 0} \,{\Omega ^{3\,n\,q}}\,{\Sigma ^{3\,n\,q}}{X^{[q]}}.\] This analysis applies to essentially arbitrary spaces X X . When specialized to X = S 0 X = {S^0} , it implies an unstable version of the Kahn-Priddy theorem. The exponential property of the James maps leads to an analysis of the behavior of loop addition with respect to the stable splitting of Ω n Σ n X {\Omega ^n}{\Sigma ^n}X when X X is connected, and there is an analogous analysis relating loop addition to the stable splitting of Q ( X + ) Q({X^ + }) .

Publisher

American Mathematical Society (AMS)

Subject

Applied Mathematics,General Mathematics

Reference23 articles.

1. The Kahn-Priddy theorem;Adams, J. F.;Proc. Cambridge Philos. Soc.,1973

2. Annals of Mathematics Studies, No. 90;Adams, John Frank,1978

3. M. G. Barratt and P. J. Eccles, Γ⁺-structures. I-III, Topology 13 (1974), 25-45, 113-126, 199-207.

4. J. Caruso, Configuration spaces and mapping spaces, Thesis, Univ. of Chicago, 1979.

5. Lecture Notes in Mathematics, Vol. 533;Cohen, Frederick R.,1976

Cited by 10 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3