Extremal problems for polynomials with exponential weights

Author:

Mhaskar H. N.,Saff E. B.

Abstract

For the extremal problem: \[ E n , r ( α ) := min exp ( | x | α ) ( x n + ) L r , α > 0 , {E_{n,r}}(\alpha ): = \min \parallel \exp ( - |x{|^\alpha })\,({x^n} + \cdots ){\parallel _{{L^r}}}, \qquad \alpha > 0, \] where L r ( 0 > r ) {L^r}\,(0 > r \leqslant \infty ) denotes the usual integral norm over R {\mathbf {R}} , and the minimum is taken over all monic polynomials of degree n n , we describe the asymptotic form of the error E n , r ( α ) ( as n ) {E_{n,r}}(\alpha )\;({\text {as}}\;n \to \infty ) as well as the limiting distribution of the zeros of the corresponding extremal polynomials. The case r = 2 r = 2 yields new information regarding the polynomials { p n ( α ; x ) = γ n ( α ) x n + } \{ {p_n}(\alpha ;x) = {\gamma _n}(\alpha )\,{x^n} + \cdots \} which are orthonormal on R {\mathbf {R}} with respect to exp ( 2 | x | α ) \exp ( - 2|x{|^\alpha }) . In particular, it is shown that a conjecture of Freud concerning the leading coefficients γ n ( α ) {\gamma _n}(\alpha ) is true in a Cesàro sense. Furthermore a contracted zero distribution theorem is proved which, unlike a previous result of Ullman, does not require the truth of the Freud’s conjecture. For r = , α > 0 r = \infty ,\alpha > 0 we also prove that, if deg P n ( x ) n \deg {P_n}(x) \leqslant n , the norm exp ( | x | α ) P n ( x ) L \parallel \exp ( - |x|^{\alpha })\,{P_n}(x)\parallel _{{L^\infty }} is attained on the finite interval \[ [ ( n / λ α ) 1 / α , ( n / λ α ) 1 / α ] , where λ α = Γ ( α ) / 2 α 2 { Γ ( α / 2 ) } 2 . \left [ { - {{(n/{\lambda _\alpha })}^{1/\alpha }},{{(n/{\lambda _\alpha })}^{1/\alpha }}} \right ],\quad {\text {where}}\;{\lambda _\alpha } = \Gamma (\alpha )/{2^{\alpha - 2}}{\{ \Gamma (\alpha /2)\} ^2}. \] Extensions of Nikolskii-type inequalities are also given.

Publisher

American Mathematical Society (AMS)

Subject

Applied Mathematics,General Mathematics

Reference34 articles.

1. International Series in Pure and Applied Mathematics;Ahlfors, Lars V.,1978

2. A. Erdélyi, W. Magnus, F. Oberhettinger and F. G. Tricomi, Higher transcendental functions, Vol. I, McGraw-Hill, New York, 1953.

3. On the uniformly-dense distribution of certain sequences of points;Erdös, Paul;Ann. of Math. (2),1940

4. G. Freud, Orthogonal polynomials, Pergamon Press, London, 1971.

5. On two polynomial inequalities. I;Freud, G.;Acta Math. Acad. Sci. Hungar.,1971

Cited by 117 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3