The weak almost periodic compactification of a semigroup is a compact semitopological semigroup with certain universal properties relative to the original semigroup. It is not, in general, a topological compactification. In this paper an internal construction of the weak almost periodic compactification of a discrete semigroup is constructed as a space of filters, and it is shown that for discrete semigroups, the compactification is usually topological. Other results obtained on the way to the main one include descriptions of weak almost periodic functions on closed subsemigroups of topological groups, conditions for functions on the additive natural numbers or on the integers to be weak almost periodic, and an example to show that the weak almost periodic compactification of the natural numbers is not the closure of the natural numbers in the weak almost periodic compactification of the integers.