Variational problems with two phases and their free boundaries

Author:

Alt Hans Wilhelm,Caffarelli Luis A.,Friedman Avner

Abstract

The problem of minimizing [ υ | 2 + q 2 ( x ) λ 2 ( υ ) ] d x \int {[\nabla \upsilon {|^2}} + {q^2}(x){\lambda ^2}(\upsilon )]dx in an appropriate class of functions υ \upsilon is considered. Here q ( x ) 0 q(x) \ne 0 and λ 2 ( υ ) = λ 1 2 {\lambda ^2}(\upsilon ) = \lambda _1^2 if υ > 0 , = λ 2 2 \upsilon > 0, = \lambda _2^2 if υ > 0 \upsilon > 0 . Any minimizer u u is harmonic in { u 0 } \{ u \ne 0\} and | u | 2 |\nabla u{|^2} has a jump \[ q 2 ( x ) ( λ 1 2 λ 2 2 ) {q^2}(x)\left ( {\lambda _1^2 - \lambda _2^2} \right ) \] across the free boundary { u 0 } \{ u \ne 0\} . Regularity and various properties are established for the minimizer u u and for the free boundary.

Publisher

American Mathematical Society (AMS)

Subject

Applied Mathematics,General Mathematics

Reference12 articles.

1. Existence and regularity for a minimum problem with free boundary;Alt, H. W.;J. Reine Angew. Math.,1981

2. Axially symmetric jet flows;Alt, H. W.;Arch. Rational Mech. Anal.,1983

3. Asymmetric jet flows;Alt, Hans Wilhelm;Comm. Pure Appl. Math.,1982

4. Jet flows with gravity;Alt, Hans Wilhelm;J. Reine Angew. Math.,1982

5. Jets with two fluids. I. One free boundary;Alt, Hans Wilhelm;Indiana Univ. Math. J.,1984

Cited by 222 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. The free boundary for a semilinear non-homogeneous Bernoulli problem;Journal of Differential Equations;2024-08

2. Some counterexamples to Alt–Caffarelli–Friedman monotonicity formulas in Carnot groups;Annali di Matematica Pura ed Applicata (1923 -);2024-07-29

3. Regularity in the two-phase Bernoulli problem for the p-Laplace operator;Calculus of Variations and Partial Differential Equations;2024-07-16

4. On Scattering Behavior of Corner Domains with Anisotropic Inhomogeneities;SIAM Journal on Mathematical Analysis;2024-07-05

5. Regularity for quasi-minima of the Alt–Caffarelli functional;Calculus of Variations and Partial Differential Equations;2024-06-25

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3