Wavelets of multiplicity 𝑟

Author:

Goodman T. N. T.,Lee S. L.

Abstract

A multiresolution approximation ( V m ) m Z {({V_m})_{m \in {\mathbf {Z}}}} of L 2 ( R ) {L^2}({\mathbf {R}}) is of multiplicity r > 0 r > 0 if there are r functions ϕ 1 , , ϕ r {\phi _1}, \ldots ,{\phi _r} whose translates form a Riesz basis for V 0 {V_0} . In the general theory we derive necessary and sufficient conditions for the translates of ϕ 1 , , ϕ r , ψ 1 , , ψ r {\phi _1}, \ldots ,{\phi _r},\;{\psi _1}, \ldots ,{\psi _r} to form a Riesz basis for V 1 {V_1} . The resulting reconstruction and decomposition sequences lead to the construction of dual bases for V 0 {V_0} and its orthogonal complement W 0 {W_0} in V 1 {V_1} . The general theory is applied in the construction of spline wavelets with multiple knots. Algorithms for the construction of these wavelets for some special cases are given.

Publisher

American Mathematical Society (AMS)

Subject

Applied Mathematics,General Mathematics

Reference12 articles.

1. C. deBoor, Splines as linear combination of B-splines, Approximation Theory II (G. Lorentz, C. Chui and L. Schumaker, eds.), Academic Press, New York, 1976, pp. 1-47.

2. Total positivity of the spline collocation matrix;de Boor, Carl;Indiana Univ. Math. J.,1976

3. A cardinal spline approach to wavelets;Chui, Charles K.;Proc. Amer. Math. Soc.,1991

4. \bysame, A general framework of compactly supported splines and wavelets, CAT Report #219, Texas A&M Univ., College Station, 1990.

5. Orthonormal bases of compactly supported wavelets;Daubechies, Ingrid;Comm. Pure Appl. Math.,1988

Cited by 10 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Applications of Framelets and Wavelets;Framelets and Wavelets;2017

2. Framelets and Wavelets Derived from Refinable Functions;Framelets and Wavelets;2017

3. Analysis of Refinable Vector Functions;Framelets and Wavelets;2017

4. Analysis of Affine Systems and Dual Framelets;Framelets and Wavelets;2017

5. Framelet Filter Banks;Framelets and Wavelets;2017

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3