A Cameron-Martin type quasi-invariance theorem for pinned Brownian motion on a compact Riemannian manifold

Author:

Driver Bruce K.

Abstract

The results in Driver [13] for quasi-invariance of Wiener measure on the path space of a compact Riemannian manifold (M) are extended to the case of pinned Wiener measure. To be more explicit, let h : [ 0 , 1 ] T 0 M h:[0,1] \to {T_0}M be a C 1 {C^1} function where M is a compact Riemannian manifold, o M o \in M is a base point, and T o M {T_o}M is the tangent space to M at o M o \in M . Let W ( M ) W(M) be the space of continuous paths from [0,1] into M, ν \nu be Wiener measure on W ( M ) W(M) concentrated on paths starting at o M o \in M , and H s ( ω ) {H_s}(\omega ) denote the stochastic-parallel translation operator along a path ω W ( M ) \omega \in W(M) up to "time" s. (Note: H s ( ω ) {H_s}(\omega ) is only well defined up to ν \nu -equivalence.) For ω W ( M ) \omega \in W(M) let X h ( ω ) {X^h}(\omega ) denote the vector field along ω \omega given by X s h ( ω ) H s ( ω ) h ( s ) X_s^h(\omega ) \equiv {H_s}(\omega )h(s) for each s [ 0 , 1 ] s \in [0,1] . One should interpret X h {X^h} as a vector field on W ( M ) W(M) . The vector field X h {X^h} induces a flow S h ( t , ) : W ( M ) W ( M ) {S^h}(t, \bullet ):W(M) \to W(M) which leaves Wiener measure ( ν ) (\nu ) quasi-invariant, see Driver [13]. It is shown in this paper that the same result is valid if h ( 1 ) = 0 h(1) = 0 and the Wiener measure ( ν ) (\nu ) is replaced by a pinned Wiener measure ( ν e ) ({\nu _e}) . (The measure ν e {\nu _e} is proportional to the measure ν \nu conditioned on the set of paths which start at o M o \in M and end at a fixed end point e M e \in M .) Also as in [13], one gets an integration by parts formula for the vector-fields X h {X^h} defined above.

Publisher

American Mathematical Society (AMS)

Subject

Applied Mathematics,General Mathematics

Reference56 articles.

1. Integration on loop groups. II. Heat equation for the Wiener measure;Airault, H.;J. Funct. Anal.,1992

2. The energy representation of Sobolev-Lie groups;Albeverio, Sergio;Compositio Math.,1978

3. Lecture Notes in Mathematics;Bismut, Jean-Michel,1981

4. Progress in Mathematics;Bismut, Jean-Michel,1984

5. Changes of filtrations and of probability measures;Brémaud, Pierre;Z. Wahrsch. Verw. Gebiete,1978

Cited by 23 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3