Asymptotics for orthogonal rational functions

Author:

Bultheel A.,González-Vera P.,Hendriksen E.,Njåstad O.

Abstract

Let { α n } \{ {\alpha _n}\} be a sequence of (not necessarily distinct) points in the open unit disk, and let \[ B 0 = 1 , B n ( z ) = m = 1 n α m ¯ | α m | ( α m z ) ( 1 α m ¯ z ) , n = 1 , 2 , , {B_0} = 1,\quad {B_n}(z) = \prod \limits _{m = 1}^n {\frac {{\overline {{\alpha _m}} }} {{|{\alpha _m}|}}\frac {{({\alpha _m} - z)}} {{(1 - \overline {{\alpha _m}} z}}),\qquad n = 1,2, \ldots ,} \] ( α n ¯ | α n | = 1 \frac {{\overline {{\alpha _n}} }} {{|{\alpha _n}|}} = - 1 when α n = 0 {\alpha _n} = 0 ). Let μ \mu be a finite (positive) Borel measure on the unit circle, and let { φ n ( z ) } \{ {\varphi _n}(z)\} be orthonormal functions obtained by orthogonalization of { B n : n = 0 , 1 , 2 , } \{ {B_n}:n = 0,1,2, \ldots \} with respect to μ \mu . Boundedness and convergence properties of the reciprocal orthogonal functions φ n ( z ) = B n ( z ) φ n ( 1 / z ¯ ) ¯ \varphi _n^*(z) = {B_n}(z)\overline {{\varphi _n}(1/\overline z )} and the reproducing kernels k n ( z , w ) = m = 0 n φ m ( z ) φ m ( w ) ¯ {k_n}(z,w) = \sum \nolimits _{m = 0}^n {{\varphi _m}(z)\overline {{\varphi _m}(w)} } are discussed in the situation | α n | R > 1 |{\alpha _n}| \leqslant R > 1 for all n n , in particular their relationship to the Szegö condition π π ln μ ( θ ) d θ > \int _{ - \pi }^\pi {\ln \mu ’(\theta )d\theta > - \infty } and noncompleteness in L 2 ( μ ) {L_2}(\mu ) of the system { φ n ( z ) : n = 0 , 1 , 2 , } \{ {\varphi _n}(z):n = 0,1,2, \ldots \} . Limit functions of φ n ( z ) \varphi _n^{\ast }(z) and k n ( z , w ) {k_n}(z,w) are obtained. In particular, if a subsequence { α n ( s ) } \{ {\alpha _{n(s)}}\} converge to α \alpha , then the subsequence { φ n ( s ) ( z ) } \{ \varphi _{n(s)}^{\ast }(z)\} converges to \[ e i λ 1 | α | 2 1 α ¯ z 1 σ μ ( z ) , λ R , {e^{i\lambda }}\frac {{\sqrt {1 - |\alpha {|^2}} }} {{1 - \overline \alpha z}}\frac {1} {{{\sigma _{\mu (z)}}}},\qquad \lambda \in {\mathbf {R}}, \] where \[ σ μ ( z ) = 2 π exp [ 1 4 π π π e i θ + z e i θ z ln μ ( θ ) d θ ] . {\sigma _\mu }(z) = \sqrt {2\pi } \exp \left [ {\frac {1} {{4\pi }}\int _{ - \pi }^\pi {\frac {{{e^{i\theta }} + z}} {{{e^{i\theta }} - z}}} \ln \mu ’(\theta )d\theta } \right ]. \] The kernels { k n ( z , w ) } \{ {k_n}(z,w)\} converge to 1 / ( 1 z w ¯ ) σ μ ( z ) σ μ ( w ) ¯ 1/(1 - z\overline w ){\sigma _\mu }(z)\overline {{\sigma _\mu }(w)} . The results generalize corresponding results from the classical Szegö theory (concerned with the polynomial situation α n = 0 {\alpha _n} = 0 for all n n ).

Publisher

American Mathematical Society (AMS)

Subject

Applied Mathematics,General Mathematics

Reference38 articles.

1. A. Bultheel, On a special Laurent-Hermite interpolation problem, Numerische Methoden der Approximations theorie 6 (L. Collatz, G. Meinardus, and H. Werner, eds.), Birkhäuser, Basel, 1981, pp. 63-79.

2. A. Bultheel and P. Dewilde, Orthogonal functions related to the Nevanlinna-Pick problem, Mathematical Theory of Networks and Systems, Proc. MTNS Conf., Delft, The Netherlands (P. Dewilde, ed.), Western Periodicals, North Hollywood, 1979, pp. 207-211.

3. A. Bultheel, P. Gonzalez-Vera, E. Hendriksen, and O. Njåsstad, A. Szegö theory for rational functions, Technical Report TW-131, K.U. Leuven, Dept. of Comput. Sci., May 1990.

4. Orthogonal rational functions similar to Szegő polynomials;Bultheel, A.,1991

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Foreword to the proceedings of the OrthoQuad 2014 conference;Journal of Computational and Applied Mathematics;2015-08

2. Rational Functions with a General Distribution of Poles on the Real Line Orthogonal with Respect to Varying Exponential Weights: I;Mathematical Physics, Analysis and Geometry;2008-10-18

3. A density problem for orthogonal rational functions;Journal of Computational and Applied Mathematics;1999-05

4. Orthogonal Rational Functions and Nested Disks;Journal of Approximation Theory;1997-06

5. Generalized Szegö Theory in Frequency Analysis;Journal of Mathematical Analysis and Applications;1997-02

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3