Approximation by smooth multivariate splines

Author:

de Boor C.,DeVore R.

Abstract

The degree of approximation achievable by piecewise polynomial functions of given total order on certain regular grids in the plane is shown to be adversely affected by smoothness requirements—in stark contrast to the univariate situation. For a rectangular grid, and for the triangular grid derived from it by adding all northeast diagonals, the maximum degree of approximation (as the grid size 1 / n 1/n goes to zero) to a suitably smooth function is shown to be O ( n ρ 2 ) O({n^{- \rho - 2}}) in case we insist that the approximating functions are in C ρ {C^\rho } . This only holds as long as ρ ( r 3 ) / 2 \rho \leqslant (r - 3)/2 and ρ ( 2 r 4 ) / 3 \rho \leqslant (2r - 4)/3 , respectively, with r r the total order of the polynomial pieces. In the contrary case, some smooth functions are not approximable at all. In the discussion of the second mesh, a new and promising kind of multivariate B {\text {B}} -spline is introduced.

Publisher

American Mathematical Society (AMS)

Subject

Applied Mathematics,General Mathematics

Reference9 articles.

1. C. de Boor and G. Fix, Spline approximation by quasi-interpolants, J. Approx. Theory 7 (1973), 19-45.

2. Recurrence relations for multivariate 𝐵-splines;de Boor, Carl;Proc. Amer. Math. Soc.,1982

3. \bysame, 𝐵-splines from parallelepipeds, MRC TSR #2320, 1982.

4. On multivariate 𝐵-splines;Dahmen, Wolfgang;SIAM J. Numer. Anal.,1980

5. Multidimensional spline approximation;Dahmen, W.;SIAM J. Numer. Anal.,1980

Cited by 73 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Accelerating multivariate functional approximation computation with domain decomposition techniques;Journal of Computational Science;2024-06

2. A practical box spline compendium;Applied Mathematics and Computation;2024-03

3. Learning theory for inferring interaction kernels in second-order interacting agent systems;Sampling Theory, Signal Processing, and Data Analysis;2023-06

4. Numerical Applications of DFT;Numerical Fourier Analysis;2023

5. Accelerating Multivariate Functional Approximation Computation with Domain Decomposition Techniques;Computational Science – ICCS 2023;2023

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3