Measurable representations of preference orders

Author:

Mauldin R. Daniel

Abstract

A continuous preference order on a topological space Y Y is a binary relation \preccurlyeq which is reflexive, transitive and complete and such that for each x , { y : x y } x,\{y:x \preccurlyeq y\} and { y : y x } \{y:y \preccurlyeq x\} are closed. Let T T and X X be complete separable metric spaces. For each t t in T T , let B t {B_t} be a nonempty subset of X X , let t { \preccurlyeq _t} be a continuous preference order on B t {B_t} and suppose E = { ( t , x , y ) : x t y } E = \{(t,x,y): x{ \preccurlyeq _t}y\} is a Borel set. Let B = { ( t , x ) : x B t } B = \{(t,x):x \in {B_t}\} . Theorem 1. There is an S ( T ) B ( X ) \mathcal {S}(T) \otimes \mathcal {B}(X) -measurable map g g from B B into R R so that for each t , g ( t , ) t,g(t,\cdot ) is a continuous map of B t {B_t} into R R and g ( t , x ) g ( t , y ) g(t,x) \leqslant g(t,y) if and only if x t y x{ \preccurlyeq _t}y . (Here S ( T ) \mathcal {S}(T) forms the C C -sets of Selivanovskii and B ( X ) \mathcal {B}(X) is a Borel field on X X .) Theorem 2. If for each t , B t t,{B_t} is a σ \sigma -compact subset of Y Y , then the map g g of the preceding theorem may be chosen to be Borel measurable. The following improvement of a theorem of Wesley is proved using classical methods. Theorem 3. Let g g be the map constructed in Theorem 1. If μ \mu is a probability measure defined on the Borel subsets of T T , then there is a Borel set N N such that μ ( N ) = 0 \mu (N) = 0 and such that the restriction of g g to B ( ( T N ) × X ) B \cap ((T - N) \times X) is Borel measurable.

Publisher

American Mathematical Society (AMS)

Subject

Applied Mathematics,General Mathematics

Reference16 articles.

1. J. P. Burgess, Classical hierarchies from a modern standpoint, Part I. 𝐶-sets, Fund. Math. (to appear).

2. \bysame, Personal communication, 1981.

3. \bysame, From preference to utility, a problem of descriptive set theory, preprint.

4. Measurable parametrizations and selections;Cenzer, Douglas;Trans. Amer. Math. Soc.,1978

5. G. Debreu, Continuity properties of Paretian utility, Internat. Econom. Rev. 5 (1964), 285-293.

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. THE THRESHOLD DECISION MAKING EFFECTUATED BY THE ENUMERATING PREFERENCE FUNCTION;International Journal of Information Technology & Decision Making;2013-11

2. Borel measurable selections of Paretian utility functions;Journal of Mathematical Economics;1994-07

3. Joint pseudo-utility representations;Journal of Mathematical Analysis and Applications;1992-09

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3