Recursive labelling systems and stability of recursive structures in hyperarithmetical degrees

Author:

Ash C. J.

Abstract

We show that, under certain assumptions of recursiveness in A \mathfrak {A} , the recursive structure A \mathfrak {A} is Δ α 0 \Delta _\alpha ^0 -stable for α > ω 1 C K \alpha > \omega _1^{CK} if and only if there is an enumeration of A \mathfrak {A} using a Σ α 0 \Sigma _\alpha ^0 set of recursive Σ α {\Sigma _\alpha } infinitary formulae and finitely many parameters from A \mathfrak {A} . This extends the results of [1]. To do this, we first obtain results concerning Δ α 0 \Delta _\alpha ^0 paths in recursive labelling systems, also extending results of [1]. We show, more generally, that a path and a labelling can simultaneously be defined, when each node of the path is to be obtained by a Δ α 0 \Delta _\alpha ^0 function from the previous node and its label.

Publisher

American Mathematical Society (AMS)

Subject

Applied Mathematics,General Mathematics

Reference6 articles.

1. Stability of recursive structures in arithmetical degrees;Ash, C. J.;Ann. Pure Appl. Logic,1986

2. \bysame, Categoricity of recursive structures in hyperarithmetical degrees (in preparation).

3. E. Barker, Intrinsically Σ_{𝛼}⁰ relations (preprint).

4. Perspectives in Mathematical Logic;Barwise, Jon,1975

5. The number of nonautoequivalent constructivizations;Gončarov, S. S.;Algebra i Logika,1977

Cited by 76 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. On categoricity of scattered linear orders of constructive ranks;Archive for Mathematical Logic;2024-08-16

2. THE STRUCTURAL COMPLEXITY OF MODELS OF ARITHMETIC;The Journal of Symbolic Logic;2023-06-29

3. On bi-embeddable categoricity of algebraic structures;Annals of Pure and Applied Logic;2022-03

4. On Categoricity Spectra for Locally Finite Graphs;Siberian Mathematical Journal;2021-09

5. Punctual Categoricity Spectra of Computably Categorical Structures;Algebra and Logic;2021-07

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3